Bo Guan
Personal Details
First Name: | Bo |
Middle Name: | |
Last Name: | Guan |
Suffix: | |
RePEc Short-ID: | pgu845 |
[This author has chosen not to make the email address public] | |
Terminal Degree: | 2021 Cardiff Business School; Cardiff University (from RePEc Genealogy) |
Affiliation
Accounting and Finance Section
Cardiff Business School
Cardiff University
Cardiff, United Kingdomhttp://business.cardiff.ac.uk/research/academic-sections/accounting-finance
RePEc:edi:fsbcfuk (more details at EDIRC)
Research output
Jump to: Working papers ArticlesWorking papers
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2023.
"Asymmetric volatility spillover between crude oil and other asset markets,"
Cardiff Economics Working Papers
E2023/27, Cardiff University, Cardiff Business School, Economics Section.
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2024. "Asymmetric volatility spillover between crude oil and other asset markets," Energy Economics, Elsevier, vol. 130(C).
Articles
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2024.
"Asymmetric volatility spillover between crude oil and other asset markets,"
Energy Economics, Elsevier, vol. 130(C).
- Guan, Bo & Mazouz, Khelifa & Xu, Yongdeng, 2023. "Asymmetric volatility spillover between crude oil and other asset markets," Cardiff Economics Working Papers E2023/27, Cardiff University, Cardiff Business School, Economics Section.
- Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022. "Forecasting tourism growth with State-Dependent Models," Annals of Tourism Research, Elsevier, vol. 94(C).
- Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020. "Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Working papers
-
Sorry, no citations of working papers recorded.
Articles
- Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022.
"Forecasting tourism growth with State-Dependent Models,"
Annals of Tourism Research, Elsevier, vol. 94(C).
Cited by:
- Malaj, Emi & Malaj, Visar, 2023. "Determinants of international tourism: Empirical evidence from three Mediterranean countries," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(2), pages 66-72.
- Yongmei Fang & Bo Guan & Shangjuan Wu & Saeed Heravi, 2020.
"Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 877-886, September.
Cited by:
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
- Akyildirim, Erdinc & Cepni, Oguzhan & Corbet, Shaen & Uddin, Gazi Salah, 2020. "Forecasting Mid-price Movement of Bitcoin Futures Using Machine Learning," Working Papers 20-2020, Copenhagen Business School, Department of Economics.
- Easaw, Joshy & Fang, Yongmei & Heravi, Saeed, 2021. "Using Polls to Forecast Popular Vote Share for US Presidential Elections 2016 and 2020: An Optimal Forecast Combination Based on Ensemble Empirical Model," Cardiff Economics Working Papers E2021/34, Cardiff University, Cardiff Business School, Economics Section.
- Rui Luo & Jinpei Liu & Piao Wang & Zhifu Tao & Huayou Chen, 2024. "A multisource data‐driven combined forecasting model based on internet search keyword screening method for interval soybean futures price," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 366-390, March.
- Yelin Wang & Ping Yang & Zan Song & Julien Chevallier & Qingtai Xiao, 2024. "Intelligent Prediction of Annual CO2 Emissions Under Data Decomposition Mode," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 711-740, February.
- Ramos & Pablo Negri & Martín Breitkopf & María Laura Ojeda, 2021. "From International to Regional Commodity Price Pass-through Using Self-Driven Recurrent Networks," Asociación Argentina de Economía Política: Working Papers 4513, Asociación Argentina de Economía Política.
- Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
- Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.
- Zhongfei Li & Kai Gan & Shaolong Sun & Shouyang Wang, 2023. "A new PM2.5 concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 154-175, January.
- Juan D. Borrero & Jesus Mariscal, 2022. "Predicting Time SeriesUsing an Automatic New Algorithm of the Kalman Filter," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
- Yue-Jun Zhang & Han Zhang & Rangan Gupta, 2023. "A new hybrid method with data-characteristic-driven analysis for artificial intelligence and robotics index return forecasting," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
- Changxia Sun & Menghao Pei & Bo Cao & Saihan Chang & Haiping Si, 2023. "A Study on Agricultural Commodity Price Prediction Model Based on Secondary Decomposition and Long Short-Term Memory Network," Agriculture, MDPI, vol. 14(1), pages 1-22, December.
- Xiaojie Xu & Yun Zhang, 2022. "Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 169-181, July.
- Nguyen, Thach V.H. & Nguyen, Thai Vu Hong & Nguyen, Thanh Cong & Pham, Thu Thi Anh & Nguyen, Quan M.P., 2022. "Stablecoins versus traditional cryptocurrencies in response to interbank rates," Finance Research Letters, Elsevier, vol. 47(PB).
- Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023.
"Forecasting mid-price movement of Bitcoin futures using machine learning,"
Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
More information
Research fields, statistics, top rankings, if available.Statistics
Access and download statistics for all items
NEP Fields
NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.- NEP-RMG: Risk Management (1) 2023-12-04. Author is listed
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.
To update listings or check citations waiting for approval, Bo Guan should log into the RePEc Author Service.
To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.
To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.
Please note that most corrections can take a couple of weeks to filter through the various RePEc services.