IDEAS home Printed from https://ideas.repec.org/f/pbr550.html
   My authors  Follow this author

Simon A. Broda

Personal Details

First Name:Simon
Middle Name:A.
Last Name:Broda
Suffix:
RePEc Short-ID:pbr550
[This author has chosen not to make the email address public]
https://www.hslu.ch/de-ch/hochschule-luzern/ueber-uns/personensuche/profile/?pid=4728

Affiliation

(47%) Afdeling Kwantitatieve Economie
Faculteit Economie en Bedrijfskunde
Universiteit van Amsterdam

Amsterdam, Netherlands
http://www.uva.nl/over-de-uva/organisatie/organogram/content/faculteiten/faculteit-economie-en-bedrijfskunde/afdeling-kwantitatieve-economie-ke/afdeling-kwantitatieve-economie-ke.html
RePEc:edi:keuvanl (more details at EDIRC)

(6%) Tinbergen Instituut

Amsterdam, Netherlands
http://www.tinbergen.nl/
RePEc:edi:tinbenl (more details at EDIRC)

(47%) Amsterdam School of Economics
Faculteit Economie en Bedrijfskunde
Universiteit van Amsterdam

Amsterdam, Netherlands
http://feb.uva.nl/asehome/
RePEc:edi:asuvanl (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. S. Broda & Juan Carlos Arismendi-Zambrano, 2020. "On Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors∗," Economics Department Working Paper Series n302-20.pdf, Department of Economics, National University of Ireland - Maynooth.
  2. Juan Arismendi & Simon Broda, 2016. "Multivariate Elliptical Truncated Moments," ICMA Centre Discussion Papers in Finance icma-dp2016-06, Henley Business School, University of Reading.
  3. Simon A. Broda, 2013. "Tail probabilities and partial moments for quadratic forms in multivariate generalized hyperbolic random vectors," UvA-Econometrics Working Papers 13-04, Universiteit van Amsterdam, Dept. of Econometrics.
  4. Simon A. Broda & Raymond Kan, 2013. "On Distributions of Ratios," UvA-Econometrics Working Papers 13-10, Universiteit van Amsterdam, Dept. of Econometrics.
  5. Simon A. BRODA & Markus HAAS & Jochen KRAUSE & Marc S. PAOLELLA & Sven C. STEUDE, 2011. "Stable Mixture GARCH Models," Swiss Finance Institute Research Paper Series 11-39, Swiss Finance Institute.
  6. Broda, Simon & Carstensen, Kai & Paolella, Marc S., 2009. "Assessing and improving the performance of nearly efficient unit root tests in small samples," Munich Reprints in Economics 20017, University of Munich, Department of Economics.
  7. Simon A. BRODA & Marc S. PAOLELLA, 2008. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Swiss Finance Institute Research Paper Series 08-08, Swiss Finance Institute.
  8. Broda, Simon & Paolella, Marc S. & Carstensen, Kai, 2007. "Bias-adjusted estimation in the ARX(1) model," Munich Reprints in Economics 19992, University of Munich, Department of Economics.
  9. Simon Broda & Marc Paolella & Yianna Tchopourian, 2006. "Approximately Exact Inference in Dynamic Panel Models," Computing in Economics and Finance 2006 368, Society for Computational Economics.

Articles

  1. Simon A Broda & Juan Arismendi Zambrano, 2021. "On quadratic forms in multivariate generalized hyperbolic random vectors [Expected shortfall: A natural coherent alternative to value at risk]," Biometrika, Biometrika Trust, vol. 108(2), pages 413-424.
  2. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
  3. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
  4. Steven J. Nooijen & Simon A. Broda, 2016. "Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 17(4), pages 321-335, October.
  5. Simon A. Broda & Raymond Kan, 2016. "On distributions of ratios," Biometrika, Biometrika Trust, vol. 103(1), pages 205-218.
  6. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
  7. Simon A. Broda & Marc S. Paolella, 2009. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 412-436, Fall.
  8. Simon Broda & Kai Carstensen & Marc Paolella, 2009. "Assessing and Improving the Performance of Nearly Efficient Unit Root Tests in Small Samples," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 468-494.
  9. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.
  10. Broda, Simon & Carstensen, Kai & Paolella, Marc S., 2007. "Bias-adjusted estimation in the ARX(1) model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3355-3367, April.
  11. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Juan Arismendi & Simon Broda, 2016. "Multivariate Elliptical Truncated Moments," ICMA Centre Discussion Papers in Finance icma-dp2016-06, Henley Business School, University of Reading.

    Cited by:

    1. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    2. Baishuai Zuo & Chuancun Yin, 2022. "Multivariate doubly truncated moments for generalized skew-elliptical distributions with application to multivariate tail conditional risk measures," Papers 2203.00839, arXiv.org.
    3. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    4. Galarza, Christian E. & Matos, Larissa A. & Castro, Luis M. & Lachos, Victor H., 2022. "Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Ouzan, Samuel, 2020. "Loss aversion and market crashes," Economic Modelling, Elsevier, vol. 92(C), pages 70-86.
    6. Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.

  2. Simon A. Broda, 2013. "Tail probabilities and partial moments for quadratic forms in multivariate generalized hyperbolic random vectors," UvA-Econometrics Working Papers 13-04, Universiteit van Amsterdam, Dept. of Econometrics.

    Cited by:

    1. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    2. Simon A. Broda & Raymond Kan, 2013. "On Distributions of Ratios," UvA-Econometrics Working Papers 13-10, Universiteit van Amsterdam, Dept. of Econometrics.
    3. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.

  3. Simon A. BRODA & Markus HAAS & Jochen KRAUSE & Marc S. PAOLELLA & Sven C. STEUDE, 2011. "Stable Mixture GARCH Models," Swiss Finance Institute Research Paper Series 11-39, Swiss Finance Institute.

    Cited by:

    1. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.
    2. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    3. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars, 2010. "Option pricing with asymmetric heteroskedastic normal mixture models," LIDAM Discussion Papers CORE 2010049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
    5. Marcel Ausloos & Franck Jovanovic & Christophe Schinckus, 2016. "On the "usual" misunderstandings between econophysics and finance: some clarifications on modelling approaches and efficient market hypothesis," Papers 1606.02045, arXiv.org.
    6. Mike G. Tsionas & Nicholas Apergis, 2023. "Another look at contagion across United States and European financial markets: Evidence from the credit default swaps markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1137-1155, January.
    7. Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
    8. Jovanovic, Franck & Schinckus, Christophe, 2016. "Breaking down the barriers between econophysics and financial economics," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 256-266.
    9. Schinckus, Christophe, 2015. "Positivism in finance and its implication for the diversification finance research," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 103-106.
    10. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    11. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    12. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Chasing volatility - A persistent multiplicative error model with jumps," CREATES Research Papers 2014-29, Department of Economics and Business Economics, Aarhus University.
    13. Markus Haas & Jochen Krause & Marc S. Paolella & Sven C. Steude, 2013. "Time-Varying Mixture GARCH Models and Asymmetric Volatility," Swiss Finance Institute Research Paper Series 13-04, Swiss Finance Institute.
    14. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    15. Haas, Markus & Liu, Ji-Chun, 2015. "Theory for a Multivariate Markov--switching GARCH Model with an Application to Stock Markets," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112855, Verein für Socialpolitik / German Economic Association.
    16. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    17. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    18. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    19. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.

  4. Broda, Simon & Carstensen, Kai & Paolella, Marc S., 2009. "Assessing and improving the performance of nearly efficient unit root tests in small samples," Munich Reprints in Economics 20017, University of Munich, Department of Economics.

    Cited by:

    1. Paulo M. M. Rodrigues, 2013. "Recursive adjustment, unit root tests and structural breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 62-82, January.
    2. Stephan Smeekes, 2013. "Detrending Bootstrap Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 32(8), pages 869-891, November.
    3. Olivier Darné & Amélie Charles, 2012. "A note on the uncertain trend in US real GNP: Evidence from robust unit root tests," Economics Bulletin, AccessEcon, vol. 32(3), pages 2399-2406.
    4. Ronald W. Butler & Marc S. Paolella, 2017. "Autoregressive Lag—Order Selection Using Conditional Saddlepoint Approximations," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    5. Maxwell L. King & Sivagowry Sriananthakumar, 2015. "Point Optimal Testing: A Survey of the Post 1987 Literature," Monash Econometrics and Business Statistics Working Papers 5/15, Monash University, Department of Econometrics and Business Statistics.

  5. Simon A. BRODA & Marc S. PAOLELLA, 2008. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Swiss Finance Institute Research Paper Series 08-08, Swiss Finance Institute.

    Cited by:

    1. Olivier Ledoit & Michael Wolf, 2019. "The power of (non-)linear shrinking: a review and guide to covariance matrix estimation," ECON - Working Papers 323, Department of Economics - University of Zurich, revised Feb 2020.
    2. Mohamed Yousfi & Abderrazak Dhaoui & Houssam Bouzgarrou, 2021. "Risk Spillover during the COVID-19 Global Pandemic and Portfolio Management," JRFM, MDPI, vol. 14(5), pages 1-29, May.
    3. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    4. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    5. Zolotko, Mikhail & Okhrin, Ostap, 2014. "Modelling the general dependence between commodity forward curves," Energy Economics, Elsevier, vol. 43(C), pages 284-296.
    6. Amel Melki & Ahmed Ghorbel, 2023. "Which Commodity Sectors Effectively Hedge Emerging Eastern European Stock Markets? Evidence from MGARCH Models," Commodities, MDPI, vol. 2(3), pages 1-19, August.
    7. Liu, Zhenhua & Tseng, Hui-Kuan & Wu, Jy S. & Ding, Zhihua, 2020. "Implied volatility relationships between crude oil and the U.S. stock markets: Dynamic correlation and spillover effects," Resources Policy, Elsevier, vol. 66(C).
    8. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    9. Irene Henriques & Perry Sadorsky, 2018. "Can Bitcoin Replace Gold in an Investment Portfolio?," JRFM, MDPI, vol. 11(3), pages 1-19, August.
    10. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    11. Fajardo, José & Farias, Aquiles, 2010. "Derivative pricing using multivariate affine generalized hyperbolic distributions," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1607-1617, July.
    12. Simon Hediger & Jeffrey Näf & Marc S. Paolella & Paweł Polak, 2023. "Heterogeneous tail generalized common factor modeling," Digital Finance, Springer, vol. 5(2), pages 389-420, June.
    13. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    14. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
    15. Markus Haas & Jochen Krause & Marc S. Paolella & Sven C. Steude, 2013. "Time-Varying Mixture GARCH Models and Asymmetric Volatility," Swiss Finance Institute Research Paper Series 13-04, Swiss Finance Institute.
    16. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.
    17. Henriques, Irene & Sadorsky, Perry, 2018. "Investor implications of divesting from fossil fuels," Global Finance Journal, Elsevier, vol. 38(C), pages 30-44.
    18. Matilainen, Markus & Nordhausen, Klaus & Oja, Hannu, 2015. "New independent component analysis tools for time series," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 80-87.
    19. Raza, Naveed & Ali, Sajid & Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur & Salman, Aneel, 2019. "Can alternative hedging assets add value to Islamic-conventional portfolio mix: Evidence from MGARCH models," Resources Policy, Elsevier, vol. 61(C), pages 210-230.
    20. Xiaoning Kang & Xinwei Deng & Kam‐Wah Tsui & Mohsen Pourahmadi, 2020. "On variable ordination of modified Cholesky decomposition for estimating time‐varying covariance matrices," International Statistical Review, International Statistical Institute, vol. 88(3), pages 616-641, December.
    21. Ali, Sajid & Raza, Naveed & Vinh Vo, Xuan & Le, Van, 2022. "Modelling the joint dynamics of financial assets using MGARCH family models: Insights into hedging and diversification strategies," Resources Policy, Elsevier, vol. 78(C).
    22. Francesco Bianchi & Lorenzo Mercuri & Edit Rroji, 2022. "Portfolio Selection with Irregular Time Grids: an example using an ICA-COGARCH(1, 1) approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(1), pages 57-85, March.
    23. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    24. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    25. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    26. Díaz, Antonio & Esparcia, Carlos & Huélamo, Diego, 2023. "Stablecoins as a tool to mitigate the downside risk of cryptocurrency portfolios," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    27. Syed Abul, Basher & Perry, Sadorsky, 2015. "Hedging emerging market stock prices with oil, gold, VIX, and bonds: A comparison between DCC, ADCC and GO-GARCH," MPRA Paper 68231, University Library of Munich, Germany.
    28. Umar, Zaghum & Hussain Shahzad, Syed Jawad & Kenourgios, Dimitris, 2019. "Hedging U.S. metals & mining Industry's credit risk with industrial and precious metals," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    29. Abdul Aziz, Nor Syahilla & Vrontos, Spyridon & M. Hasim, Haslifah, 2019. "Evaluation of multivariate GARCH models in an optimal asset allocation framework," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 568-596.
    30. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    31. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    32. Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
    33. Pham, Linh, 2019. "Do all clean energy stocks respond homogeneously to oil price?," Energy Economics, Elsevier, vol. 81(C), pages 355-379.
    34. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    35. Díaz, Antonio & Escribano, Ana & Esparcia, Carlos, 2024. "Sustainable risk preferences on asset allocation: a higher order optimal portfolio study," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).

  6. Broda, Simon & Paolella, Marc S. & Carstensen, Kai, 2007. "Bias-adjusted estimation in the ARX(1) model," Munich Reprints in Economics 19992, University of Munich, Department of Economics.

    Cited by:

    1. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.
    2. Kiviet, Jan F. & Phillips, Garry D.A., 2012. "Higher-order asymptotic expansions of the least-squares estimation bias in first-order dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3705-3729.
    3. Ronald W. Butler & Marc S. Paolella, 2017. "Autoregressive Lag—Order Selection Using Conditional Saddlepoint Approximations," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    4. Jorge Arevalillo, 2014. "Higher-order approximations to the quantile of the distribution for a class of statistics in the first-order autoregression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 291-310, June.
    5. van Giersbergen, Noud P.A., 2016. "The ability to correct the bias in the stable AD(1,1) model with a feedback effect," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 186-204.

  7. Simon Broda & Marc Paolella & Yianna Tchopourian, 2006. "Approximately Exact Inference in Dynamic Panel Models," Computing in Economics and Finance 2006 368, Society for Computational Economics.

    Cited by:

    1. Robert L. Paige & A. Alexandre Trindade & P. Harshini Fernando, 2009. "Saddlepoint‐Based Bootstrap Inference for Quadratic Estimating Equations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 98-111, March.

Articles

  1. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.

    Cited by:

    1. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    2. Bruno Bouchard & Adil Reghai & Benjamin Virrion, 2020. "Computation of Expected Shortfall by fast detection of worst scenarios," Papers 2005.12593, arXiv.org.

  2. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    See citations under working paper version above.
  3. Steven J. Nooijen & Simon A. Broda, 2016. "Predicting Equity Markets with Digital Online Media Sentiment: Evidence from Markov-switching Models," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 17(4), pages 321-335, October.

    Cited by:

    1. Oliver Entrop & Bart Frijns & Marco Seruset, 2020. "The determinants of price discovery on bitcoin markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 816-837, May.
    2. Maghyereh, Aktham & Abdoh, Hussein, 2020. "The tail dependence structure between investor sentiment and commodity markets," Resources Policy, Elsevier, vol. 68(C).
    3. Tom Marty & Bruce Vanstone & Tobias Hahn, 2020. "News media analytics in finance: a survey," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(2), pages 1385-1434, June.
    4. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    5. Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
    6. Fasanya, Ismail & Adekoya, Oluwasegun & Oyewole, Oluwatomisin & Adegboyega, Soliu, 2022. "Investor sentiment and energy futures predictability: Evidence from Feasible Quasi Generalized Least Squares," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).

  4. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    See citations under working paper version above.
  5. Simon A. Broda & Marc S. Paolella, 2009. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 412-436, Fall.
    See citations under working paper version above.
  6. Simon Broda & Kai Carstensen & Marc Paolella, 2009. "Assessing and Improving the Performance of Nearly Efficient Unit Root Tests in Small Samples," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 468-494.
    See citations under working paper version above.
  7. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.

    Cited by:

    1. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.

  8. Broda, Simon & Carstensen, Kai & Paolella, Marc S., 2007. "Bias-adjusted estimation in the ARX(1) model," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3355-3367, April.
    See citations under working paper version above.
  9. Broda, Simon & Paolella, Marc S., 2007. "Saddlepoint approximations for the doubly noncentral t distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2907-2918, March.

    Cited by:

    1. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    2. Jochen Krause & Marc S. Paolella, 2014. "A Fast, Accurate Method for Value-at-Risk and Expected Shortfall," Econometrics, MDPI, vol. 2(2), pages 1-25, June.
    3. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    4. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
    5. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    6. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    7. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 4 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (4) 2013-08-31 2014-01-10 2016-10-30 2020-06-22
  2. NEP-RMG: Risk Management (2) 2013-08-31 2020-06-22

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Simon A. Broda should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.