IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v42y2019i2p44-49.html
   My bibliography  Save this article

Energy And Exergy Analysis Of A Solar Photovoltaic Performance In Baghdad

Author

Listed:
  • Fadhil Abdulrazzaq Kareem

    (Institute of Technology Baghdad, Middle Technical University, Baghdad, Iraq)

  • Doaa Zaid Khalaf

    (Engineering Technical Collage Baghdad, Middle Technical University, Baghdad, Iraq)

  • Noor Samir Lafta

    (Institute of Technology Baghdad, Middle Technical University, Baghdad, Iraq)

  • Yasser Abdul Lateef

    (Engineering Technical Collage Baghdad, Middle Technical University, Baghdad, Iraq)

Abstract

Photovoltaic modules usually generate electricity from a specific range of light frequencies and cannot cover the whole solar range of infrared, ultraviolet and diffused light. Hence, much of the striking sunlight energy is wasted by the solar modules. Thus, energy and exergy analysis were conducted to determine the performance of a solar photovoltaic module in Baghdad, Iraq. An engineering equation solver (EES) software has been using to develop the mathematical model. The environmental parameter of solar radiation, ambient temperature, and wind speed were obtained using Meteonorm software. The operating parameters of a PV module includes normal operation cell temperature, open-circuit voltage, and short-circuit current were obtain from manufacturer data sheet. The results showed that, the exergy efficiency ranged from 10.8% to 15.8 %, while the energy efficiency varies between 15.71% to 15.74 % and the exergy destruction varied from 182.8 to 352.3 W/m2 throughout the year. It has been found that, the first law efficiency was greater than second law efficiency. The differences between the two efficiencies from January to December are (25.6%, 31.1%, 25.1%, 25.6%, 17.8%, 9.6%, 9.6%, 1.2%, 0.5%, 0.45%, 2.5%, and 14.6%) respectively. While the exergy destruction through the same 12- months are (195.4, 233.5, 304.3, 352.3, 333.8, 292.9, 309.3, 274.6, 249.8, 215.9, 187.4, and 182.8) W/m2.

Suggested Citation

  • Fadhil Abdulrazzaq Kareem & Doaa Zaid Khalaf & Noor Samir Lafta & Yasser Abdul Lateef, 2019. "Energy And Exergy Analysis Of A Solar Photovoltaic Performance In Baghdad," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 44-49, March.
  • Handle: RePEc:zib:zjmerd:v:42:y:2019:i:2:p:44-49
    DOI: 10.26480/jmerd.02.2019.44.49
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3216/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.02.2019.44.49?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    2. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    2. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    3. Yazdanifard, Farideh & Ameri, Mehran & Ebrahimnia-Bajestan, Ehsan, 2017. "Performance of nanofluid-based photovoltaic/thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 323-352.
    4. Bellos, Evangelos & Tzivanidis, Christos, 2017. "Yearly performance of a hybrid PV operating with nanofluid," Renewable Energy, Elsevier, vol. 113(C), pages 867-884.
    5. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    6. Jiang, Yifan & Li, Xinsheng & Yao, Jian & Wan, Xin & Zhang, Jingxin & Dai, Yanjun, 2022. "Design and performance simulation of a distributed aerobic composting system assisted by solar PV/T heat pump," Renewable Energy, Elsevier, vol. 196(C), pages 547-559.
    7. Xiao, Gang & Zheng, Guanghua & Ni, Dong & Li, Qiang & Qiu, Min & Ni, Mingjiang, 2018. "Thermodynamic assessment of solar photon-enhanced thermionic conversion," Applied Energy, Elsevier, vol. 223(C), pages 134-145.
    8. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    9. Daghigh, R. & Ruslan, M.H. & Sopian, K., 2011. "Advances in liquid based photovoltaic/thermal (PV/T) collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4156-4170.
    10. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    11. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    12. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    13. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    14. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    15. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    16. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    17. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    18. Al-Shamani, Ali Najah & Yazdi, Mohammad H. & Alghoul, M.A. & Abed, Azher M. & Ruslan, M.H. & Mat, Sohif & Sopian, K., 2014. "Nanofluids for improved efficiency in cooling solar collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 348-367.
    19. Gang Pei & Guiqiang Li & Xi Zhou & Jie Ji & Yuehong Su, 2012. "Comparative Experimental Analysis of the Thermal Performance of Evacuated Tube Solar Water Heater Systems With and Without a Mini-Compound Parabolic Concentrating (CPC) Reflector( C," Energies, MDPI, vol. 5(4), pages 1-14, April.
    20. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:42:y:2019:i:2:p:44-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.