IDEAS home Printed from https://ideas.repec.org/a/zib/zbnwcm/v3y2019i1p1-6.html
   My bibliography  Save this article

Evaluation Of Climate Change Impacts On Rainfall Patterns In Pothohar Region Of Pakistan

Author

Listed:
  • Gohar Gulshan Mahmood

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad, Pakistan-38000)

  • Haroon Rashid

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad, Pakistan-38000)

  • Shafiq Anwar

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad, Pakistan-38000)

  • Abdul Nasir

    (Department of Structures & Environmental Engineering, University of Agriculture Faisalabad, Pakistan-38000)

Abstract

Pakistan is a developing country whose economy mainly depends on agriculture which is more susceptible to the effects of climate changes. Due to lack of modern technical resources, Pakistan does not have adequate monitoring systems for the prediction of likelihood of occurrence of extreme events, or the assessment of possible changes in weather patterns, thus making the task of developing short term response or disaster mitigation strategies extremely difficult. Pothohar is a plateau in north-eastern Pakistan, forming the northern part of Punjab including Attock, Chakwal, Jhehlum, Rawalpindi districts and Islamabad Territory. Pothohar region is a prominent region in Pakistan and consists of important districts. Its agriculture is entirely based on rainfall and no canals are available for the irrigation in this area. Farmers in this area are adversely affected by the changing climate and abrupt changes in rainfall. They need to know the changing patterns of rainfall to adopt new techniques and schedules for their agriculture to cope the changing climate. Four districts were selected to cover this region and rainfall and temperature data of these districts and Mann-Kendall method was used to detect the trends. After that, kriging was used for interpolating the data between the stations. Monthly precipitation trends were identified here to achieve the objective which has been shown in the data. There are rising rates of precipitation in some months and decreasing trends in some other months obtained by these statistical tests suggesting overall insignificant changes in the area. From the results it is clear that the majority of the trends in the annual, seasonal and monthly Tmax and Tmin time series showed increasing tendency during the last decades, while the increasing trends in the Tmin series were stronger than those in the Tmax series. The Tmax and Tmin warming trends were more obvious in summer and winter than in autumn and spring.

Suggested Citation

  • Gohar Gulshan Mahmood & Haroon Rashid & Shafiq Anwar & Abdul Nasir, 2019. "Evaluation Of Climate Change Impacts On Rainfall Patterns In Pothohar Region Of Pakistan," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 3(1), pages 1-6, January.
  • Handle: RePEc:zib:zbnwcm:v:3:y:2019:i:1:p:1-6
    DOI: 10.26480/wcm.01.2019.01.06
    as

    Download full text from publisher

    File URL: https://www.watconman.org/download/5488/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/wcm.01.2019.01.06?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Cao & Hamdi Ayed & Mahidzal Dahari & Ndolane Sene & Belgacem Bouallegue, 2022. "Using artificial neural network to optimize hydrogen solubility and evaluation of environmental condition effects [CFD-based irreversibility analysis of avant-garde semi-O/O-shape grooving fashions," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 328-343.
    2. Naveed Ahmed & Haishen Lü & Shakeel Ahmed & Ghulam Nabi & Muhammad Abdul Wajid & Aamir Shakoor & Hafiz Umar Farid, 2021. "Irrigation Supply and Demand, Land Use/Cover Change and Future Projections of Climate, in Indus Basin Irrigation System, Pakistan," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    3. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    4. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    5. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    6. Yulong Shu & Kai Lin & Yafang Yu, 2024. "Study on Urban Land Simulation under the Perspective of Local Climate Zoning—A Case Study of Guiyang City," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    7. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    8. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    9. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    10. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    11. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    12. Myeong Ja Kwak & Jong Kyu Lee & Sanghee Park & Yea Ji Lim & Handong Kim & Kyeong Nam Kim & Sun Mi Je & Chan Ryul Park & Su Young Woo, 2020. "Evaluation of the Importance of Some East Asian Tree Species for Refinement of Air Quality by Estimating Air Pollution Tolerance Index, Anticipated Performance Index, and Air Pollutant Uptake," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    13. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    14. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    15. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    16. Maria Silva Dias & Juliana Dias & Leila Carvalho & Edmilson Freitas & Pedro Silva Dias, 2013. "Changes in extreme daily rainfall for São Paulo, Brazil," Climatic Change, Springer, vol. 116(3), pages 705-722, February.
    17. Sridhara Nayak & Suman Maity & Kuvar S. Singh & Hara Prasad Nayak & Soma Dutta, 2021. "Influence of the Changes in Land-Use and Land Cover on Temperature over Northern and North-Eastern India," Land, MDPI, vol. 10(1), pages 1-13, January.
    18. Sakketa, Tekalign Gutu, 2022. "Urbanisation and rural development in developing countries: A review of pathways and impacts," IDOS Discussion Papers 5/2022, German Institute of Development and Sustainability (IDOS).
    19. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    20. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnwcm:v:3:y:2019:i:1:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://www.watconman.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.