IDEAS home Printed from https://ideas.repec.org/a/zbw/espost/264480.html
   My bibliography  Save this article

Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences

Author

Listed:
  • Diluiso, Francesca
  • Walk, Paula
  • Manych, Niccolò
  • Cerutti, Nicola
  • Chipiga, Vladislav
  • Workman, Annabelle
  • Ayas, Ceren
  • Cui, Ryna Yiyun
  • Cui, Diyang
  • Song, Kaihui
  • Banisch, Lucy A.
  • Moretti, Nikolaj
  • Callaghan, Max W.
  • Clarke, Leon
  • Creutzig, Felix
  • Hilaire, Jérôme
  • Jotzo, Frank
  • Kalkuhl, Matthias
  • Lamb, William F
  • Löschel, Andreas
  • Müller-Hansen, Finn
  • Nemet, Gregory F.
  • Oei, Pao-Yu
  • Sovacool, Benjamin K.
  • Steckel, Jan C.
  • Thomas, Sebastian
  • Wiseman, John
  • Minx, Jan C.

Abstract

A rapid coal phase-out is needed to meet the goals of the Paris Agreement, but is hindered by serious challenges ranging from vested interests to the risks of social disruption. To understand how to organize a global coal phase-out, it is crucial to go beyond cost-effective climate mitigation scenarios and learn from the experience of previous coal transitions. Despite the relevance of the topic, evidence remains fragmented throughout different research fields, and not easily accessible. To address this gap, this paper provides a systematic map and comprehensive review of the literature on historical coal transitions. We use computer-assisted systematic mapping and review methods to chart and evaluate the available evidence on historical declines in coal production and consumption. We extracted a dataset of 278 case studies from 194 publications, covering coal transitions in 44 countries and ranging from the end of the 19th century until 2021. We find a relatively recent and rapidly expanding body of literature reflecting the growing importance of an early coal phase-out in scientific and political debates. Previous evidence has primarily focused on the United Kingdom, the United States, and Germany, while other countries that experienced large coal declines, like those in Eastern Europe, are strongly underrepresented. An increasing number of studies, mostly published in the last 5 years, has been focusing on China. Most of the countries successfully reducing coal dependency have undergone both demand-side and supply-side transitions. This supports the use of policy approaches targeting both demand and supply to achieve a complete coal phase-out. From a political economy perspective, our dataset highlights that most transitions are driven by rising production costs for coal, falling prices for alternative energies, or local environmental concerns, especially regarding air pollution. The main challenges for coal-dependent regions are structural change transformations, in particular for industry and labor. Rising unemployment is the most largely documented outcome in the sample. Policymakers at multiple levels are instrumental in facilitating coal transitions. They rely mainly on regulatory instruments to foster the transitions and compensation schemes or investment plans to deal with their transformative processes. Even though many models suggest that coal phase-outs are among the low-hanging fruits on the way to climate neutrality and meeting the international climate goals, our case studies analysis highlights the intricate political economy at work that needs to be addressed through well-designed and just policies.

Suggested Citation

  • Diluiso, Francesca & Walk, Paula & Manych, Niccolò & Cerutti, Nicola & Chipiga, Vladislav & Workman, Annabelle & Ayas, Ceren & Cui, Ryna Yiyun & Cui, Diyang & Song, Kaihui & Banisch, Lucy A. & Moretti, 2021. "Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 16(11).
  • Handle: RePEc:zbw:espost:264480
    DOI: 10.1088/1748-9326/ac1b58
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/264480/1/Diluiso_2021_Environ._Res._Lett._16_113003.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1088/1748-9326/ac1b58?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    2. Do, Thang Nam & Burke, Paul J., 2023. "Phasing out coal power in a developing country context: Insights from Vietnam," Energy Policy, Elsevier, vol. 176(C).
    3. Lola Nacke & Vadim Vinichenko & Aleh Cherp & Avi Jakhmola & Jessica Jewell, 2024. "Compensating affected parties necessary for rapid coal phase-out but expensive if extended to major emitters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Frankowski, Jan & Mazurkiewicz, Joanna & Sokołowski, Jakub, 2023. "Mapping the indirect employment of hard coal mining: A case study of Upper Silesia, Poland," Resources Policy, Elsevier, vol. 83(C).
    5. Müller-Hansen, Finn & Lee, Yuan Ting & Callaghan, Max & Jankin, Slava & Minx, Jan C., 2022. "The German coal debate on Twitter: Reactions to a corporate policy process," Energy Policy, Elsevier, vol. 169(C).
    6. Zhu, Hongqing & Liao, Qi & Qu, Baolin & Hu, Lintao & Wang, Haoran & Gao, Rongxiang & Zhang, Yilong, 2023. "Relationship between the main functional groups and complex permittivity in pre-oxidised lignite at terahertz frequencies based on grey correlation analysis," Energy, Elsevier, vol. 278(C).
    7. Florian Egli & Rui Zhang & Victor Hopo & Tobias Schmidt & Bjarne Steffen, 2023. "The contribution of corporate initiatives to global renewable electricity deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:espost:264480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.