IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v33y2023i4p119-131id7.html
   My bibliography  Save this article

Simultaneous pickup and delivery model suggestion for personnel transportation in COVID-19 pandemic conditions

Author

Listed:
  • Erkan Köse
  • Ahsen Korkmazer
  • Danışment Vural
  • Gökçe Gül Gökceoğlu
  • Pınar Şavlı

Abstract

The impact of COVID-19 on the transportation costs of a large-scale company has been examined. Before the pandemic, shift personnel were transported to the factory by shuttles, and after a quick shift change, other shift personnel were transported back to their homes. However, with the implementation of laws mandating the reduction of shuttle seat capacities, transportation costs have risen significantly. To address this issue, a new simultaneous pickup and delivery model is proposed as an alternative to the separate transportation of shift workers. The results of this study indicate that the proposed model provides a substantial advantage in terms of both the number of vehicles used and the total distance traveled, leading to a significant reduction in costs. This research underscores the importance of effective operations research practices for the profitability of companies, particularly in extraordinary circumstances such as the COVID-19 pandemic.

Suggested Citation

  • Erkan Köse & Ahsen Korkmazer & Danışment Vural & Gökçe Gül Gökceoğlu & Pınar Şavlı, 2023. "Simultaneous pickup and delivery model suggestion for personnel transportation in COVID-19 pandemic conditions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(4), pages 119-131.
  • Handle: RePEc:wut:journl:v:33:y:2023:i:4:p:119-131:id:7
    DOI: 10.37190/ord230407
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2023vol33no4_7.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord230407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radosław Jadczak, 2005. "Solving Vehicle Routing Problems with evolutionary algorithms," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 15(3-4), pages 7-22.
    2. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Danışment Vural & Robert F. Dell & Erkan Kose, 2021. "Locating unmanned aircraft systems for multiple missions under different weather conditions," Operational Research, Springer, vol. 21(1), pages 725-744, March.
    5. Kebing Chen & Tiaojun Xiao & Shengbin Wang & Dong Lei, 2021. "Inventory strategies for perishable products with two-period shelf-life and lost sales," International Journal of Production Research, Taylor & Francis Journals, vol. 59(17), pages 5301-5320, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuo, Tsai Chi & Chen, Gary Yu-Hsin & Wang, Miao Ling & Ho, Ming Way, 2014. "Carbon footprint inventory route planning and selection of hot spot suppliers," International Journal of Production Economics, Elsevier, vol. 150(C), pages 125-139.
    2. D. G. N. D. Jayarathna & G. H. J. Lanel & Z. A. M. S. Juman, 2022. "Industrial vehicle routing problem: a case study," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
    3. Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    4. Yu, Junfang & Dong, Yuanyuan, 2013. "Maximizing profit for vehicle routing under time and weight constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 573-583.
    5. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.
    6. Minis, I. & Tatarakis, A., 2011. "Stochastic single vehicle routing problem with delivery and pick up and a predefined customer sequence," European Journal of Operational Research, Elsevier, vol. 213(1), pages 37-51, August.
    7. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    8. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    9. Tianlu Zhao & Yongjian Yang & En Wang, 2020. "Minimizing the average arriving distance in carpooling," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    10. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    11. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    12. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    13. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    14. Pandelis, D.G. & Karamatsoukis, C.C. & Kyriakidis, E.G., 2013. "Finite and infinite-horizon single vehicle routing problems with a predefined customer sequence and pickup and delivery," European Journal of Operational Research, Elsevier, vol. 231(3), pages 577-586.
    15. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    16. Tibor Holczinger & Olivér Ősz & Máté Hegyháti, 2020. "Scheduling approach for on-site jobs of service providers," Flexible Services and Manufacturing Journal, Springer, vol. 32(4), pages 913-948, December.
    17. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    18. Narjes MASHHADI BANDANI & Alireza NADERI & Mohsen AKBARPOUR SHIRZAEI, 2017. "Cement Transportation Limited-Fleet Modeling And Assigning To Rated Demands," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(1), pages 111-123, March.
    19. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:33:y:2023:i:4:p:119-131:id:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.