IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v88y2023ics0038012123001775.html
   My bibliography  Save this article

Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model

Author

Listed:
  • Yang, Tiannuo
  • Chu, Zhongzhu
  • Wang, Bailin

Abstract

Public transport operators in rural areas have been under pressure from weak profitability and emission issues. At the same time, scattered demand for transport has been preventing logistics systems from reaching the last mile in residential areas. Multimodal transport can synergistically integrate passenger and freight demand, increase transportation network coverage, and reduce the cost of transportation, while demand-driven services improve the flexibility and reliability of operational decisions. Therefore, this paper proposes a demand-driven passenger-and-freight-integration service (DDPFIS) mode. From the perspective of routing decisions, a new mixed-integer linear programming model based on the green vehicle routing problem is formulated to assist public transport operator’s complex decision-making. In the proposed model, vehicle capacity is fully utilized through a combination of passenger and freight demand so that optimal decisions are made about vehicle routing. Numerical experiments are designed and conducted based on realistic instances with the results indicating that: the DDPFIS mode enables effective integration of different demands, leading to high-level vehicle capacity utilization and cost reduction; and compared with two conventional models of vehicle routing problems, the proposed model achieves lower fuel consumption and cost for all problem sizes. In addition, some important management insights are provided, e.g., a greater proportion of integrated service nodes is not necessarily better; and it is more suitable to provide a service for rural residents who are relatively insensitive to time.

Suggested Citation

  • Yang, Tiannuo & Chu, Zhongzhu & Wang, Bailin, 2023. "Feasibility on the integration of passenger and freight transportation in rural areas: A service mode and an optimization model," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:soceps:v:88:y:2023:i:c:s0038012123001775
    DOI: 10.1016/j.seps.2023.101665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123001775
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    2. Li, Zhujun & Shalaby, Amer & Roorda, Matthew J. & Mao, Baohua, 2021. "Urban rail service design for collaborative passenger and freight transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    3. Feng Li & Xin Guo & Li Zhou & Jianjun Wu & Tongfei Li, 2022. "A capacity matching model in a collaborative urban public transport system: integrating passenger and freight transportation," International Journal of Production Research, Taylor & Francis Journals, vol. 60(20), pages 6303-6328, October.
    4. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    5. Norlund, Ellen Karoline & Gribkovskaia, Irina & Laporte, Gilbert, 2015. "Supply vessel planning under cost, environment and robustness considerations," Omega, Elsevier, vol. 57(PB), pages 271-281.
    6. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    7. Huang, Wencheng & Zhang, Yue & Shuai, Bin & Xu, Minhao & Xiao, Wei & Zhang, Rui & Xu, Yifei, 2019. "China railway industry reform evolution approach: Based on the Vertical Separation Model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 546-556.
    8. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    9. Xu, Xianhao & Shen, Yaohan & (Amanda) Chen, Wanying & Gong, Yeming & Wang, Hongwei, 2021. "Data-driven decision and analytics of collection and delivery point location problems for online retailers," Omega, Elsevier, vol. 100(C).
    10. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    11. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    13. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    14. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    15. Huang, Yeran & Mannino, Carlo & Yang, Lixing & Tang, Tao, 2020. "Coupling time-indexed and big-M formulations for real-time train scheduling during metro service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 38-61.
    16. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    17. Marco Mazzarino & Lucio Rubini, 2019. "Smart Urban Planning: Evaluating Urban Logistics Performance of Innovative Solutions and Sustainable Policies in the Venice Lagoon—the Results of a Case Study," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    18. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.
    19. Ma, Mingyou & Zhang, Fangni & Liu, Wei & Dixit, Vinayak, 2022. "A game theoretical analysis of metro-integrated city logistics systems," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 14-27.
    20. Anderluh, Alexandra & Nolz, Pamela C. & Hemmelmayr, Vera C. & Crainic, Teodor Gabriel, 2021. "Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics," European Journal of Operational Research, Elsevier, vol. 289(3), pages 940-958.
    21. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    22. Jianqiang Cui & Jago Dodson & Peter V. Hall, 2015. "Planning for Urban Freight Transport: An Overview," Transport Reviews, Taylor & Francis Journals, vol. 35(5), pages 583-598, September.
    23. Nocera, Silvio & Cavallaro, Federico, 2017. "A two-step method to evaluate the Well-To-Wheel carbon efficiency of Urban Consolidation Centres," Research in Transportation Economics, Elsevier, vol. 65(C), pages 44-55.
    24. Ghilas, Veaceslav & Demir, Emrah & Woensel, Tom Van, 2016. "A scenario-based planning for the pickup and delivery problem with time windows, scheduled lines and stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 34-51.
    25. Xianhao Xu & Yaohan Shen & Wanying (amanda) Chen & Yeming Gong & Hongwei Wang, 2021. "Data-driven decision and analytics of collection and delivery point location problems for online retailers," Post-Print hal-03188219, HAL.
    26. Bruzzone, Francesco & Cavallaro, Federico & Nocera, Silvio, 2021. "The integration of passenger and freight transport for first-last mile operations," Transport Policy, Elsevier, vol. 100(C), pages 31-48.
    27. Nocera, Silvio & Pungillo, Giuseppe & Bruzzone, Francesco, 2021. "How to evaluate and plan the freight-passengers first-last mile," Transport Policy, Elsevier, vol. 113(C), pages 56-66.
    28. Zhu, Shengda & Bell, Michael G.H. & Schulz, Veronica & Stokoe, Michael, 2023. "Co-modality in city logistics: Sounds good, but how?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengyu Chen & Zhongzhu Chu, 2024. "Mere facade? Is greenwashing behaviour lower in low‐carbon corporates?," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4162-4174, July.
    2. Zhang, Ruijuan & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A cooperative vehicle routing problem with delivery options for simultaneous pickup and delivery services in rural areas," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    3. Basso, Franco & Núñez, Matías & Paredes-Belmar, German & Pezoa, Raúl & Varas, Mauricio, 2024. "Estimation of stops of last-mile delivery vehicles: An application in the food industry in the city of Santiago de Chile," Journal of Transport Geography, Elsevier, vol. 116(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Machado, Bruno & Pimentel, Carina & Sousa, Amaro de, 2023. "Integration planning of freight deliveries into passenger bus networks: Exact and heuristic algorithms," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    2. Bruzzone, Francesco & Nocera, Silvio & Pesenti, Raffaele, 2023. "Feasibility and optimization of freight-on-transit schemes for the sustainable operation of passengers and logistics," Research in Transportation Economics, Elsevier, vol. 101(C).
    3. Feng, Wenhao & Tanimoto, Keishi & Chosokabe, Madoka, 2023. "Feasibility analysis of freight-passenger integration using taxis in rural areas by a mixed-integer programming model," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    4. Lu, Chung-Cheng & Diabat, Ali & Li, Yi-Ting & Yang, Yu-Min, 2022. "Combined passenger and parcel transportation using a mixed fleet of electric and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    5. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    6. Ringsberg, Henrik, 2023. "Sustainable FLM transport based on IPF transport by ferry in coastal rural areas: A case from Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    7. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    8. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    9. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    11. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    12. Hu, Wanjie & Dong, Jianjun & Hwang, Bon-Gang & Ren, Rui & Chen, Zhilong, 2022. "Is mass rapid transit applicable for deep integration of freight-passenger transport? A multi-perspective analysis from urban China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 490-510.
    13. Zhu, Shengda & Bell, Michael G.H. & Schulz, Veronica & Stokoe, Michael, 2023. "Co-modality in city logistics: Sounds good, but how?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    14. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    15. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    16. Liu, Dan & Yan, Pengyu & Pu, Ziyuan & Wang, Yinhai & Kaisar, Evangelos I., 2021. "Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    17. Nan Ding & Jingshuai Yang & Zhibin Han & Jianming Hao, 2022. "Electric-Vehicle Routing Planning Based on the Law of Electric Energy Consumption," Mathematics, MDPI, vol. 10(17), pages 1-27, August.
    18. Weiheng Zhang & Yuvraj Gajpal & Srimantoorao. S. Appadoo & Qi Wei, 2020. "Multi-Depot Green Vehicle Routing Problem to Minimize Carbon Emissions," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    19. Leggieri, Valeria & Haouari, Mohamed, 2017. "A practical solution approach for the green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 97-112.
    20. Herbert Kopfer & Benedikt Vornhusen, 2019. "Energy vehicle routing problem for differently sized and powered vehicles," Journal of Business Economics, Springer, vol. 89(7), pages 793-821, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:88:y:2023:i:c:s0038012123001775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.