IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p677-d1594401.html
   My bibliography  Save this article

An Improved Salp Swarm Algorithm for Solving a Multi-Temperature Joint Distribution Route Optimization Problem

Author

Listed:
  • Yimei Chang

    (Logistics School, Beijing Wuzi University, No. 321 Fuhe Street, Tongzhou District, Beijing 101149, China
    Beijing Contemporary Logistics Research Base, No. 321 Fuhe Street, Tongzhou District, Beijing 101149, China)

  • Jiaqi Yu

    (Sinotrans Overseas Development Ltd., Block B China Merchants Plaza, No. 10 Building, No. 5 Anding Road, Chaoyang District, Beijing 100029, China)

  • Yang Wang

    (China Communications Trading & Supply Co., Ltd., No. 9 Building, No.1 Jiaochangkou Street, Xicheng District, Beijing 100032, China)

  • Xiaoling Xie

    (Logistics School, Beijing Wuzi University, No. 321 Fuhe Street, Tongzhou District, Beijing 101149, China
    Beijing Contemporary Logistics Research Base, No. 321 Fuhe Street, Tongzhou District, Beijing 101149, China)

Abstract

In order to address the diverse and personalized needs of consumers for fresh products, as well as to enhance the efficiency and safety of fresh product delivery, this paper proposes an integer programming model aimed at minimizing total distribution costs. The model takes into account the cold storage multi-temperature joint distribution mode, carbon emission costs, and actual constraints associated with the distribution process of fresh products. To solve this model, an improved salp swarm algorithm (SSA) has been developed. The feasibility and effectiveness of both the proposed model and algorithm are demonstrated using R110 data from the Solomon standard calculation example. Research findings indicate that compared to traditional single-product temperature distribution modes, the multi-temperature joint distribution mode achieves reductions in total distribution costs and vehicle quantities by 45.4% and 72.2%, respectively. Furthermore, it is observed that total distribution costs increase with rising unit carbon tax prices; however, the rate of growth gradually diminishes over time. Additionally, a reduction in vehicle load capacity results in a continuous rise in total delivery costs after reaching a certain turning point. When compared to conventional SSAs and genetic algorithms, the proposed algorithm demonstrates superior performance in generating optimal multi-temperature joint distribution route schemes for fresh products.

Suggested Citation

  • Yimei Chang & Jiaqi Yu & Yang Wang & Xiaoling Xie, 2025. "An Improved Salp Swarm Algorithm for Solving a Multi-Temperature Joint Distribution Route Optimization Problem," Mathematics, MDPI, vol. 13(4), pages 1-24, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:677-:d:1594401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Goodson, Justin C., 2015. "A priori policy evaluation and cyclic-order-based simulated annealing for the multi-compartment vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 241(2), pages 361-369.
    3. Lu, Da & Gzara, Fatma, 2019. "The robust vehicle routing problem with time windows: Solution by branch and price and cut," European Journal of Operational Research, Elsevier, vol. 275(3), pages 925-938.
    4. Muyldermans, L. & Pang, G., 2010. "On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm," European Journal of Operational Research, Elsevier, vol. 206(1), pages 93-103, October.
    5. Yang, Lei & Tang, Ruihong, 2019. "Comparisons of sales modes for a fresh product supply chain with freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 425-448.
    6. Wang, Yang & Wu, Qinghua & Glover, Fred, 2017. "Effective metaheuristic algorithms for the minimum differential dispersion problem," European Journal of Operational Research, Elsevier, vol. 258(3), pages 829-843.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    2. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    3. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    4. Liang Sun, 2022. "Modeling and evolutionary algorithm for solving a multi-depot mixed vehicle routing problem with uncertain travel times," Journal of Heuristics, Springer, vol. 28(5), pages 619-651, December.
    5. Yu, Vincent F. & Anh, Pham Tuan & Baldacci, Roberto, 2023. "A robust optimization approach for the vehicle routing problem with cross-docking under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    6. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    7. Henriette Koch & Tino Henke & Gerhard Wäscher, 2016. "A Genetic Algorithm for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 160004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    8. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2019. "A branch-and-cut algorithm for the multi-compartment vehicle routing problem with flexible compartment sizes," Annals of Operations Research, Springer, vol. 275(2), pages 321-338, April.
    9. Heßler, Katrin, 2021. "Exact algorithms for the multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 294(1), pages 188-205.
    10. Katrin Heßler, 2020. "Exact Algorithms for the Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," Working Papers 2007, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    11. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    12. Ostermeier, Manuel & Hübner, Alexander, 2018. "Vehicle selection for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 269(2), pages 682-694.
    13. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    14. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    15. Zhinan Li & Qinming Liu & Chunming Ye & Ming Dong & Yihan Zheng, 2022. "Achieving Resilience: Resilient Price and Quality Strategies of Fresh Food Dual-Channel Supply Chain Considering the Disruption," Sustainability, MDPI, vol. 14(11), pages 1-24, May.
    16. Tianlu Zhao & Yongjian Yang & En Wang, 2020. "Minimizing the average arriving distance in carpooling," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    17. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    18. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    19. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:677-:d:1594401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.