IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v2y2013p81-90id1085.html
   My bibliography  Save this article

A semi-Markov model of the variability of power generation from renewable sources

Author

Listed:
  • Jacek Malinowski

Abstract

The paper presents a new approach to modeling the variability of power generation from a renewable source such as wind or flowing water. The force of the power generating agent is assumed to change according to the semi-Markov process with finite state space. For the purpose of its construction, the range of possible values expressing the agent’s force is divided into a finite number of subintervals. It is natural to assume that the time during which the agent’s force remains within one such interval, and the probabilities of transitions to neighboring intervals depend to some extent on the agent’s earlier behavior. The model’s accuracy is determined by the number of subintervals used and the assumed degree to which the agent’s force depends on its history. This degree is expressed by the number of the most recently entered subintervals relevant to predicting the agent’s future behavior. According to the presupposed accuracy level, an appropriately complex state-space and a diagram of the inter-state transitions for the modeled process have been constructed. Subsequently, it is demonstrated how certain parameters of this process, related to forecasting power generation, can be calculated by means of the calculus of the Laplace transforms.

Suggested Citation

  • Jacek Malinowski, 2013. "A semi-Markov model of the variability of power generation from renewable sources," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 23(2), pages 81-90.
  • Handle: RePEc:wut:journl:v:2:y:2013:p:81-90:id:1085
    DOI: 10.5277/ord130207
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1085%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5277/ord130207?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Hui & Tian, Hong-Qi & Chen, Chao & Li, Yan-fei, 2010. "A hybrid statistical method to predict wind speed and wind power," Renewable Energy, Elsevier, vol. 35(8), pages 1857-1861.
    2. Ai, B. & Yang, H. & Shen, H. & Liao, X., 2003. "Computer-aided design of PV/wind hybrid system," Renewable Energy, Elsevier, vol. 28(10), pages 1491-1512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edyta Ropuszyńska-Surma & Magdalena Węglarz & Janusz Szwabiński, 2018. "Energy prosumers. Profiling the energy microgeneration market in Lower Silesia, Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 75-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wut:journl:v:2:y:2013:id:1085 is not listed on IDEAS
    2. Méndez-Gordillo, Alma Rosa & Cadenas, Erasmo, 2021. "Wind speed forecasting by the extraction of the multifractal patterns of time series through the multiplicative cascade technique," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    4. Niu, Tong & Wang, Jianzhou & Zhang, Kequan & Du, Pei, 2018. "Multi-step-ahead wind speed forecasting based on optimal feature selection and a modified bat algorithm with the cognition strategy," Renewable Energy, Elsevier, vol. 118(C), pages 213-229.
    5. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    6. Ying-Yi Hong & Ti-Hsuan Yu & Ching-Yun Liu, 2013. "Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition," Energies, MDPI, vol. 6(12), pages 1-16, November.
    7. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    8. DeBenedictis, A. & Hoff, T.E. & Price, S. & Woo, C.K., 2010. "Statistically adjusted engineering (SAE) modeling of metered roof-top photovoltaic (PV) output: California evidence," Energy, Elsevier, vol. 35(10), pages 4178-4183.
    9. Rona George Allwyn & Rashid Al Abri & Arif Malik & Amer Al-Hinai, 2021. "Economic Analysis of Replacing HPS Lamp with LED Lamp and Cost Estimation to Set Up PV/Battery System for Street Lighting in Oman," Energies, MDPI, vol. 14(22), pages 1-25, November.
    10. Zjavka, Ladislav, 2015. "Wind speed forecast correction models using polynomial neural networks," Renewable Energy, Elsevier, vol. 83(C), pages 998-1006.
    11. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    12. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    13. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    14. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    15. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    16. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    17. Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
    18. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    19. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    20. Méndez-Gordillo, Alma Rosa & Campos-Amezcua, Rafael & Cadenas, Erasmo, 2022. "Wind speed forecasting using a hybrid model considering the turbulence of the airflow," Renewable Energy, Elsevier, vol. 196(C), pages 422-431.
    21. Zhao, Pan & Wang, Jiangfeng & Xia, Junrong & Dai, Yiping & Sheng, Yingxin & Yue, Jie, 2012. "Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China," Renewable Energy, Elsevier, vol. 43(C), pages 234-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:2:y:2013:p:81-90:id:1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.