IDEAS home Printed from https://ideas.repec.org/a/wsi/jeapmx/v16y2014i04ns1464333214500380.html
   My bibliography  Save this article

Consideration Of Life Cycle Energy Use And Greenhouse Gas Emissions In Road Infrastructure Planning Processes: Examples Of Sweden, Norway, Denmark And The Netherlands

Author

Listed:
  • SOFIIA MILIUTENKO

    (Division of Environmental Strategies Research (fms), KTH Royal Institute of Technology, Sweden)

  • INGEBORG KLUTS

    (Environmental Systems Analysis Group, Wageningen University, the Netherlands;
    Copernicus Institute of Sustainable Development, Utrecht University, the Netherlands)

  • KRISTINA LUNDBERG

    (Ecoloop, Sweden)

  • SUSANNA TOLLER

    (Division of Environmental Strategies Research (fms), KTH Royal Institute of Technology, Sweden;
    Swedish Transport Administration (Trafikverket), Sweden)

  • HELGE BRATTEBØ

    (Department of Energy and Process Engineering, Norwegian University of Science and Technology, Norway)

  • HARPA BIRGISDÓTTIR

    (Harpa Birgisdottir Consulting, Denmark)

  • JOSÉ POTTING

    (Division of Environmental Strategies Research (fms), KTH Royal Institute of Technology, Sweden;
    Environmental Systems Analysis Group, Wageningen University, the Netherlands)

Abstract

Energy use and greenhouse gas (GHG) emissions associated with life cycle stages of road infrastructure are currently rarely assessed during road infrastructure planning. This study examines the road infrastructure planning process, with emphasis on its use of Environmental Assessments (EA), and identifies when and how Life Cycle Assessment (LCA) can be integrated in the early planning stages for supporting decisions such as choice of road corridor. Road infrastructure planning processes are compared for four European countries (Sweden, Norway, Denmark, and the Netherlands).The results show that only Norway has a formalised way of using LCA during choice of road corridor. Only the Netherlands has a requirement for using LCA in the later procurement stage. It is concluded that during the early stages of planning, LCA could be integrated as part of an EA, as a separate process or as part of a Cost-Benefit Analysis.

Suggested Citation

  • Sofiia Miliutenko & Ingeborg Kluts & Kristina Lundberg & Susanna Toller & Helge Brattebø & Harpa Birgisdóttir & José Potting, 2014. "Consideration Of Life Cycle Energy Use And Greenhouse Gas Emissions In Road Infrastructure Planning Processes: Examples Of Sweden, Norway, Denmark And The Netherlands," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1-26.
  • Handle: RePEc:wsi:jeapmx:v:16:y:2014:i:04:n:s1464333214500380
    DOI: 10.1142/S1464333214500380
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S1464333214500380
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S1464333214500380?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chester, Mikhail V, 2008. "Life-cycle Environmental Inventory of Passenger Transportation in the United States," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n29n303, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2012. "The Quantified Traveler: Changing transport behavior with personalized travel data feedback," University of California Transportation Center, Working Papers qt3047k0dw, University of California Transportation Center.
    2. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt9jg0p1rj, University of California Transportation Center.
    3. Wojciech SZYMALSKI, 2021. "Energy And Co 2 Emission Intensities Of Various Modes Of Passenger Transport In Warsaw," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(2), pages 131-140, June.
    4. Christian Spreafico & Davide Russo, 2020. "Exploiting the Scientific Literature for Performing Life Cycle Assessment about Transportation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    5. Levon Amatuni & Juudit Ottelin & Bernhard Steubing & Jos'e Mogollon, 2019. "Does car sharing reduce greenhouse gas emissions? Life cycle assessment of the modal shift and lifetime shift rebound effects," Papers 1910.11570, arXiv.org.
    6. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt678537sx, University of California Transportation Center.
    7. Michael Minn, 2019. "Contested Power: American Long-Distance Passenger Rail and the Ambiguities of Energy Intensity Analysis," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    8. Ana María Arbeláez Vélez & Andrius Plepys, 2021. "Car Sharing as a Strategy to Address GHG Emissions in the Transport System: Evaluation of Effects of Car Sharing in Amsterdam," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    9. Ryerson, Megan S., 2010. "Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price," University of California Transportation Center, Working Papers qt8696z26t, University of California Transportation Center.
    10. Kristoffer W. Lie & Trym A. Synnevåg & Jacob J. Lamb & Kristian M. Lien, 2021. "The Carbon Footprint of Electrified City Buses: A Case Study in Trondheim, Norway," Energies, MDPI, vol. 14(3), pages 1-21, February.
    11. Simon Robertson, 2013. "High-speed rail's potential for the reduction of carbon dioxide emissions from short haul aviation: a longitudinal study of modal substitution from an energy generation and renewable energy perspectiv," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(5), pages 395-412, July.
    12. Ali Azhar Butt & John Harvey & Arash Saboori & Maryam Ostovar & Manuel Bejarano & Navneet Garg, 2020. "Decision Support in Selecting Airfield Pavement Design Alternatives Using Life Cycle Assessment: Case Study of Nashville Airport," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    13. Rohacs, Jozsef & Rohacs, Daniel, 2020. "Energy coefficients for comparison of aircraft supported by different propulsion systems," Energy, Elsevier, vol. 191(C).
    14. Antonia Rahn & Kai Wicke & Gerko Wende, 2022. "Using Discrete-Event Simulation for a Holistic Aircraft Life Cycle Assessment," Sustainability, MDPI, vol. 14(17), pages 1-31, August.
    15. Rajib Sinha & Lars E. Olsson & Björn Frostell, 2019. "Sustainable Personal Transport Modes in a Life Cycle Perspective—Public or Private?," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    16. Igor Kabashkin & Vladimir Perekrestov & Timur Tyncherov & Leonid Shoshin & Vitalii Susanin, 2024. "Framework for Integration of Health Monitoring Systems in Life Cycle Management for Aviation Sustainability and Cost Efficiency," Sustainability, MDPI, vol. 16(14), pages 1-40, July.
    17. Peng Du & Antony Wood & Brent Stephens, 2016. "Empirical Operational Energy Analysis of Downtown High-Rise vs. Suburban Low-Rise Lifestyles: A Chicago Case Study," Energies, MDPI, vol. 9(6), pages 1-27, June.
    18. Jariyasunant, Jerald & Abou-Zeid, Maya & Carrel, Andre & Ekambaram, Venkatesan & Gaker, David & Sengupta, Raja & Walker, Joan L., 2013. "Quantified Traveler: Travel Feedback Meets the Cloud to Change Behavior," University of California Transportation Center, Working Papers qt2dh952gj, University of California Transportation Center.
    19. Tiago Ramos da Silva & Bruna Moura & Helena Monteiro, 2023. "Life Cycle Assessment of Current Portuguese Railway and Future Decarbonization Scenarios," Sustainability, MDPI, vol. 15(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jeapmx:v:16:y:2014:i:04:n:s1464333214500380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jeapm/jeapm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.