IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1301.1496.html
   My bibliography  Save this paper

Multivariate risk measures: a constructive approach based on selections

Author

Listed:
  • Ignacio Cascos
  • Ilya Molchanov

Abstract

Since risky positions in multivariate portfolios can be offset by various choices of capital requirements that depend on the exchange rules and related transaction costs, it is natural to assume that the risk measures of random vectors are set-valued. Furthermore, it is reasonable to include the exchange rules in the argument of the risk measure and so consider risk measures of set-valued portfolios. This situation includes the classical Kabanov's transaction costs model, where the set-valued portfolio is given by the sum of a random vector and an exchange cone, but also a number of further cases of additional liquidity constraints. We suggest a definition of the risk measure based on calling a set-valued portfolio acceptable if it possesses a selection with all individually acceptable marginals. The obtained selection risk measure is coherent (or convex), law invariant and has values being upper convex closed sets. We describe the dual representation of the selection risk measure and suggest efficient ways of approximating it from below and from above. In case of Kabanov's exchange cone model, it is shown how the selection risk measure relates to the set-valued risk measures considered by Kulikov (2008), Hamel and Heyde (2010), and Hamel, Heyde and Rudloff (2013).

Suggested Citation

  • Ignacio Cascos & Ilya Molchanov, 2013. "Multivariate risk measures: a constructive approach based on selections," Papers 1301.1496, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1301.1496
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1301.1496
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    2. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    2. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    3. Maume-Deschamps Véronique & Rullière Didier & Said Khalil, 2017. "Multivariate extensions of expectiles risk measures," Dependence Modeling, De Gruyter, vol. 5(1), pages 20-44, January.
    4. Wei, Linxiao & Hu, Yijun, 2014. "Coherent and convex risk measures for portfolios with applications," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 114-120.
    5. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    6. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    7. Molchanov, Ilya, 2013. "Multivariate risk measures : a constructive approach based on selections," DES - Working Papers. Statistics and Econometrics. WS ws130101, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    9. Zuo, Yijun & Lai, Shaoyong, 2011. "Exact computation of bivariate projection depth and the Stahel-Donoho estimator," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1173-1179, March.
    10. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    11. Huiting Duan & Jinghu Yu & Linxiao Wei, 2024. "Measurement and Forecasting of Systemic Risk: A Vine Copula Grouped-CoES Approach," Mathematics, MDPI, vol. 12(8), pages 1-18, April.
    12. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    13. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    14. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    15. repec:dau:papers:123456789/2278 is not listed on IDEAS
    16. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    17. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    18. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    19. repec:dau:papers:123456789/2279 is not listed on IDEAS
    20. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    21. Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.
    22. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    23. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    24. Jiménez Guerra, Pedro, 2006. "Generalized vector risk functions," DEE - Working Papers. Business Economics. WB wb066721, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1301.1496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.