IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v18y2015i04ns0219024915500235.html
   My bibliography  Save this article

A Dupire Equation For A Regime-Switching Model

Author

Listed:
  • ROBERT J. ELLIOTT

    (School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia;
    Haskayne School of Business, University of Calgary, Calgary, Alberta, Canada;
    Centre for Applied Financial Studies, University of South Australia, Adelaide, Australia)

  • LEUNGLUNG CHAN

    (School of Mathematics and Statistics, University of New South Wales, NSW 2052, Australia)

  • TAK KUEN SIU

    (Cass Business School, City University London, 106 Bunhill Row, London EC1Y 8TZ, United Kingdom;
    Department of Applied Finance and Actuarial Studies, Faculty of Business and Economics, Macquarie University, NSW 2109, Australia)

Abstract

A forward equation, which is also called the Dupire formula, is obtained for European call options when the price dynamics of the underlying risky assets are assumed to follow a regime-switching local volatility model. Using a regime-switching version of the adjoint formula, a system of coupled forward equations is derived for the price of the European call over different states of the economy.

Suggested Citation

  • Robert J. Elliott & Leunglung Chan & Tak Kuen Siu, 2015. "A Dupire Equation For A Regime-Switching Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-13.
  • Handle: RePEc:wsi:ijtafx:v:18:y:2015:i:04:n:s0219024915500235
    DOI: 10.1142/S0219024915500235
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024915500235
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024915500235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
    2. Zhang, Ziqing, 2024. "Multi-regime foreign exchange rate model: Calibration and pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 204-218.
    3. Mengzhe Zhang & Leunglung Chan, 2016. "Pricing volatility swaps in the Heston’s stochastic volatility model with regime switching: A saddlepoint approximation method," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-20, December.
    4. Xin-Jiang He & Song-Ping Zhu, 2019. "Variance And Volatility Swaps Under A Two-Factor Stochastic Volatility Model With Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-19, June.
    5. Xin‐Jiang He & Sha Lin, 2023. "Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 951-967, July.
    6. Robert J. Elliott & Tak Kuen Siu, 2023. "Hedging options in a hidden Markov‐switching local‐volatility model via stochastic flows and a Monte‐Carlo method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(7), pages 925-950, July.
    7. Xin‐Jiang He & Song‐Ping Zhu, 2018. "On full calibration of hybrid local volatility and regime‐switching models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(5), pages 586-606, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    2. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    3. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    4. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    5. Simon J. A. Malham & Anke Wiese, 2013. "Chi-Square Simulation Of The Cir Process And The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-38.
    6. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    7. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    8. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.
    9. Andrey Itkin & Dmitry Muravey, 2023. "American options in time-dependent one-factor models: Semi-analytic pricing, numerical methods and ML support," Papers 2307.13870, arXiv.org.
    10. Andrey Itkin, 2015. "HIGH ORDER SPLITTING METHODS FOR FORWARD PDEs AND PIDEs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1-24.
    11. P. Carr & A. Itkin & D. Muravey, 2022. "Semi-analytical pricing of barrier options in the time-dependent Heston model," Papers 2202.06177, arXiv.org.
    12. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    13. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    14. Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.
    15. Susanne Griebsch & Uwe Wystup, 2011. "Quantitative Finance, Vol. 11, No. 5, May 2011, 693-709 On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1271-1271.
    16. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.
    17. A. Itkin & A. Lipton & D. Muravey, 2020. "From the Black-Karasinski to the Verhulst model to accommodate the unconventional Fed's policy," Papers 2006.11976, arXiv.org, revised Jan 2021.
    18. Sudip Ratan Chandra & Diganta Mukherjee, 2016. "Barrier Option Under Lévy Model : A PIDE and Mellin Transform Approach," Mathematics, MDPI, vol. 4(1), pages 1-18, January.
    19. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    20. Peter Buchen & Hamish Malloch, 2014. "CLA's, PLA's and a new method for pricing general passport options," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1201-1209, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:18:y:2015:i:04:n:s0219024915500235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.