IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v10y2007i06ns0219024907004548.html
   My bibliography  Save this article

A Comparison Of Some Univariate Models For Value-At-Risk And Expected Shortfall

Author

Listed:
  • CARLO MARINELLI

    (Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany)

  • STEFANO D'ADDONA

    (Department of International Studies, University of Rome III, Via G. Chiabrera 199, 00145 Rome, Italy)

  • SVETLOZAR T. RACHEV

    (School of Economics and Business Engineering, University of Karlsruhe, Kollegium am Schloss, Bau II, 20.12, R210 D-76128 Karlsruhe, Germany;
    Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, USA)

Abstract

We compare in a backtesting study the performance of univariate models for Value-at-Risk (VaR) and expected shortfall based on stable laws and on extreme value theory (EVT). Analyzing these different approaches, we test whether the sum–stability assumption or the max–stability assumption, that respectively imply α–stable laws and Generalized Extreme Value (GEV) distributions, is more suitable for risk management based on VaR and expected shortfall. Our numerical results indicate that α–stable models tend to outperform pure EVT-based methods (especially those obtained by the so-called block maxima method) in the estimation of Value-at-Risk, while a peaks-over-threshold method turns out to be preferable for the estimation of expected shortfall. We also find empirical evidence that some simple semiparametric EVT-based methods perform well in the estimation of VaR.

Suggested Citation

  • Carlo Marinelli & Stefano D'Addona & Svetlozar T. Rachev, 2007. "A Comparison Of Some Univariate Models For Value-At-Risk And Expected Shortfall," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(06), pages 1043-1075.
  • Handle: RePEc:wsi:ijtafx:v:10:y:2007:i:06:n:s0219024907004548
    DOI: 10.1142/S0219024907004548
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024907004548
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024907004548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    2. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    3. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    4. Fernanda Maria Müller & Marcelo Brutti Righi, 2024. "Comparison of Value at Risk (VaR) Multivariate Forecast Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 75-110, January.
    5. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.
    6. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2019. "Quantifying Risk in Traditional Energy and Sustainable Investments," Sustainability, MDPI, vol. 11(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    4. Chavez-Demoulin, V. & Embrechts, P. & Sardy, S., 2014. "Extreme-quantile tracking for financial time series," Journal of Econometrics, Elsevier, vol. 181(1), pages 44-52.
    5. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    6. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
    7. Jose Fernandes & Augusto Hasman & Juan Ignacio Pena, 2007. "Risk premium: insights over the threshold," Applied Financial Economics, Taylor & Francis Journals, vol. 18(1), pages 41-59.
    8. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    9. Chang, Chia-Lin & González-Serrano, Lydia & Jimenez-Martin, Juan-Angel, 2013. "Currency hedging strategies using dynamic multivariate GARCH," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 164-182.
    10. Cotter, John, 2004. "Downside Risk for European Equity Markets," MPRA Paper 3537, University Library of Munich, Germany.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    12. Martins-Filho Carlos & Yao Feng, 2006. "Estimation of Value-at-Risk and Expected Shortfall based on Nonlinear Models of Return Dynamics and Extreme Value Theory," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(2), pages 1-43, May.
    13. Sarafrazi, Soodabeh & Hammoudeh, Shawkat & AraújoSantos, Paulo, 2014. "Downside risk, portfolio diversification and the financial crisis in the euro-zone," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 368-396.
    14. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    15. Jimenez-Martin, Juan-Angel & McAleer, Michael & Pérez-Amaral, Teodosio & Santos, Paulo Araújo, 2013. "GFC-robust risk management under the Basel Accord using extreme value methodologies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 223-237.
    16. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    17. Peter F. Christoffersen & Francis X. Diebold & Til Schuermann, 1998. "Horizon problems and extreme events in financial risk management," Economic Policy Review, Federal Reserve Bank of New York, vol. 4(Oct), pages 109-118.
    18. Odening, Martin & Hinrichs, Jan, 2003. "Die Quantifizierung von Marktrisiken in der Tierproduktion mittels Value-at-Risk und Extreme-Value-Theory," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(02), pages 1-11.
    19. Luca Erzegovesi, 2002. "VaR and Liquidity Risk.Impact on Market Behaviour and Measurement Issues," Alea Tech Reports 014, Department of Computer and Management Sciences, University of Trento, Italy, revised 14 Jun 2008.
    20. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:10:y:2007:i:06:n:s0219024907004548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.