IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v10y2007i02ns0219024907004238.html
   My bibliography  Save this article

On Errors And Bias Of Fourier Transform Methods In Quadratic Term Structure Models

Author

Listed:
  • NINA BOYARCHENKO

    (The University of Chicago Graduate School of Business, 5807 South Woodlawn Avenue, Chicago, IL 60637, USA)

  • SERGEI LEVENDORSKIǏ

    (Department of Economics, The University of Texas at Austin, 1 University Station C3100, Austin, TX 78712-0301, USA)

Abstract

We analyze and compare the performance of the Fourier transform method in affine and quadratic term structure models. We explain why the method of the reduction to FFT in dimension 1 is efficient for ATSMs of type A0(n), but may lead to sizable errors for QTSMs unless computational errors are taken into account properly. We suggest a certain improvement and generalization which make FFT more accurate and, for the same precision, faster than the Leippold and Wu [M. Leippold and L. Wu, Option pricing under the quadratic class, Journal of Financial and Quantitative Analysis 37(2) (2002) 271–295] method. We deduce simple general recommendations for the choice of parameters of computational schemes for QTSMs, which ensure a given precision, and an approximate formula for the bias which FFT produces.

Suggested Citation

  • Nina Boyarchenko & Sergei Levendorskiǐ, 2007. "On Errors And Bias Of Fourier Transform Methods In Quadratic Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 273-306.
  • Handle: RePEc:wsi:ijtafx:v:10:y:2007:i:02:n:s0219024907004238
    DOI: 10.1142/S0219024907004238
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024907004238
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024907004238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    2. Svetlana I Boyarchenko & Sergei Z Levendorskii, 2002. "Non-Gaussian Merton-Black-Scholes Theory," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4955, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    2. Oleg Kudryavtsev & Sergei Levendorskiǐ, 2009. "Fast and accurate pricing of barrier options under Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 531-562, September.
    3. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei Levendorskiǐ, 2005. "Pseudodiffusions And Quadratic Term Structure Models," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 393-424, July.
    2. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    3. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    4. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    5. Mitya Boyarchenko & Marco De Innocentis & Sergei Levendorskiĭ, 2011. "Prices Of Barrier And First-Touch Digital Options In Lévy-Driven Models, Near Barrier," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1045-1090.
    6. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    7. Antonio Diez De Los Rios, 2009. "Can Affine Term Structure Models Help Us Predict Exchange Rates?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(4), pages 755-766, June.
    8. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Real options and the universal bad news principle," Finance 0405011, University Library of Munich, Germany.
    9. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    10. M. Montero, 2008. "Renewal equations for option pricing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 295-306, September.
    11. Ole E. Barndorff-Nielsen & Neil Shephard, 2012. "Basics of Levy processes," Economics Papers 2012-W06, Economics Group, Nuffield College, University of Oxford.
    12. Liming Feng & Vadim Linetsky, 2009. "Computing exponential moments of the discrete maximum of a Lévy process and lookback options," Finance and Stochastics, Springer, vol. 13(4), pages 501-529, September.
    13. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.
    14. Andrey Itkin & Peter Carr, 2012. "Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 63-104, June.
    15. Dan Pirjol & Lingjiong Zhu, 2023. "Asymptotics for Short Maturity Asian Options in Jump-Diffusion models with Local Volatility," Papers 2308.15672, arXiv.org, revised Feb 2024.
    16. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum," Papers 2312.05222, arXiv.org.
    17. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    18. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of expectations of functions of a stable L\'evy process and its extremum," Papers 2209.12349, arXiv.org.
    19. Svetlana Boyarchenko & Sergei Levendorski&icaron;, 2007. "Practical Guide To Real Options In Discrete Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 311-342, February.
    20. Niels Rom-Poulsen, 2007. "Semi-analytical MBS Pricing," The Journal of Real Estate Finance and Economics, Springer, vol. 34(4), pages 463-498, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:10:y:2007:i:02:n:s0219024907004238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.