IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v03y2000i03ns0219024900000243.html
   My bibliography  Save this article

Explaining The Forward Interest Rate Term Structure

Author

Listed:
  • ANDREW MATACZ

    (Science and Finance, 109-111 rue Victor Hugo, 92532 Levallois, France)

  • JEAN-PHILIPPE BOUCHAUD

    (Service de Physique de l'Etat Condensé CEA-Saclay, Orme des Merisiers, 91 191 Gif s/ Yvette, France)

Abstract

We present compelling empirical evidence for a new interpretation of the Forward Rate Curve (FRC) term structure. We find that the average FRC follows a square-root law, with a prefactor related to the spot volatility, suggesting a Value-at-Risk like pricing. We find a striking correlation between the instantaneous FRC and the past spot trend over a certain time horizon. This confirms the idea of an anticipated trend mechanism proposed earlier and provides a natural explanation for the observed shape of the FRC volatility. We find that the one-factor Gaussian Heath–Jarrow–Morton model calibrated to the empirical volatility function fails to adequately describe these features.

Suggested Citation

  • Andrew Matacz & Jean-Philippe Bouchaud, 2000. "Explaining The Forward Interest Rate Term Structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 381-389.
  • Handle: RePEc:wsi:ijtafx:v:03:y:2000:i:03:n:s0219024900000243
    DOI: 10.1142/S0219024900000243
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024900000243
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024900000243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Matacz & Jean-Philippe Bouchaud, 1999. "An empirical investigation of the forward interest rate term structure," Science & Finance (CFM) working paper archive 500047, Science & Finance, Capital Fund Management.
    2. Carl Chiarella & Oh-Kang Kwon, 1999. "Classes of Interest Rate Models Under the HJM Framework," Research Paper Series 13, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Jean-Philippe Bouchaud & Nicolas Sagna & Rama Cont & Nicole El-Karoui & Marc Potters, 1999. "Phenomenology of the interest rate curve," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 209-232.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baaquie, Belal E. & Pan, Tang, 2011. "Simulation of coupon bond European and barrier options in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 263-289.
    2. Zhou, Wei-Xing & Sornette, Didier, 2004. "Causal slaving of the US treasury bond yield antibubble by the stock market antibubble of August 2000," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 586-608.
    3. Baaquie, Belal E. & Tang, Pan, 2012. "Simulation of nonlinear interest rates in quantum finance: Libor Market Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1287-1308.
    4. Baaquie, Belal E. & Liang, Cui, 2007. "Empirical investigation of a field theory formula and Black's formula for the price of an interest-rate caplet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 331-348.
    5. Baaquie, Belal E. & Liang, Cui, 2007. "Pricing American options for interest rate caps and coupon bonds in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 285-316.
    6. Baaquie, Belal E. & Yang, Cao, 2009. "Empirical analysis of quantum finance interest rates models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2666-2681.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belal Baaquie & Jean-Philippe Bouchaud, 2004. ""Stiff" Field Theory of Interest Rates and Psychological Future Time," Science & Finance (CFM) working paper archive 500064, Science & Finance, Capital Fund Management.
    2. Andrew Matacz & Jean-Philippe Bouchaud, 2000. "An Empirical Investigation Of The Forward Interest Rate Term Structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 703-729.
    3. Andrew Matacz & Jean-Philippe Bouchaud, 1999. "Explaining the forward interest rate term structure," Science & Finance (CFM) working paper archive 500046, Science & Finance, Capital Fund Management.
    4. Eckhard Platen, 2005. "An Alternative Interest Rate Term Structure Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(06), pages 717-735.
    5. Raphaël Douady, 2013. "Yield Curve Smoothing and Residual Variance of Fixed Income Positions," Post-Print hal-00666751, HAL.
    6. Tiziana Di Matteo & Tomaso Aste, 2002. "How Does The Eurodollar Interest Rate Behave?," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 107-122.
    7. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    10. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    11. Belal Baaquie & Jean-Philippe Bouchaud, 2004. ""Stiff" Field Theory of Interest Rates and Psychological Future Time," Papers cond-mat/0403713, arXiv.org.
    12. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    13. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    14. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 25, July-Dece.
    15. Baaquie, Belal E. & Liang, Cui & Warachka, Mitch C., 2007. "Hedging LIBOR derivatives in a field theory model of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 730-748.
    16. Chang, Chia-Chien, 2014. "Valuation Of Mortgage Insurance Contracts With Counterparty Default Risk: Reduced-Form Approach," ASTIN Bulletin, Cambridge University Press, vol. 44(2), pages 303-334, May.
    17. Belal E. Baaquie & Marakani Srikant & Mitch Warachka, 2002. "A Quantum Field Theory Term Structure Model Applied to Hedging," Papers cond-mat/0206457, arXiv.org.
    18. Belal E. Baaquie, 2001. "Quantum Field Theory of Forward Rates with Stochastic Volatility," Papers cond-mat/0110506, arXiv.org.
    19. Rene Carmona & Michael Tehranchi, 2004. "A Characterization of Hedging Portfolios for Interest Rate Contingent Claims," Papers math/0407119, arXiv.org.
    20. D. Sornette, 1998. "``String'' formulation of the Dynamics of the Forward Interest Rate Curve," Papers cond-mat/9802136, arXiv.org.
    21. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:03:y:2000:i:03:n:s0219024900000243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.