IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i4p1287-1308.html
   My bibliography  Save this article

Simulation of nonlinear interest rates in quantum finance: Libor Market Model

Author

Listed:
  • Baaquie, Belal E.
  • Tang, Pan

Abstract

The simulation of the Libor Market Model (LMM) is extensively studied in the framework of quantum finance. The imperfectly correlated Libor rates are simulated based on a Gaussian quantum field and a recursion equation of nontrivial stochastic drift. The Libor options are studied using both the simulation method and the analytical formula. The caplet price of simulation is compared with Black’s caplet formula which can be exactly derived from the LMM. The invariance of caplet price for different forward bond numeraire is verified by using the simulation. The simulation results for coupon bond options and swaptions are compared with the approximate price, which are limited for the reason that the approximate price is derived using the small volatility expansion. The simulation method is shown to have great potential in the application of pricing interest rate instruments.

Suggested Citation

  • Baaquie, Belal E. & Tang, Pan, 2012. "Simulation of nonlinear interest rates in quantum finance: Libor Market Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1287-1308.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1287-1308
    DOI: 10.1016/j.physa.2011.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111006492
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riccardo Rebonato & Mark Joshi, 2002. "A Joint Empirical And Theoretical Investigation Of The Modes Of Deformation Of Swaption Matrices: Implications For Model Choice," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(07), pages 667-694.
    2. Baaquie, Belal E., 2010. "Interest rates in quantum finance: Caps, swaptions and bond options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 296-314.
    3. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    4. Andrew Matacz & Jean-Philippe Bouchaud, 2000. "Explaining The Forward Interest Rate Term Structure," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 381-389.
    5. Baaquie, Belal E. & Yang, Cao, 2009. "Empirical analysis of quantum finance interest rates models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2666-2681.
    6. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    7. Baaquie, Belal E. & Pan, Tang, 2011. "Simulation of coupon bond European and barrier options in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 263-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan Tang & Belal E. Baaquie & Xin Du & Ying Zhang, 2016. "Linearized Hamiltonian of the LIBOR market model: analytical and empirical results," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 878-891, February.
    2. Xiangyi Meng & Jian-Wei Zhang & Jingjing Xu & Hong Guo, 2014. "Quantum spatial-periodic harmonic model for daily price-limited stock markets," Papers 1405.4490, arXiv.org.
    3. Baaquie, Belal E. & Du, Xin & Tang, Pan & Cao, Yang, 2014. "Pricing of range accrual swap in the quantum finance Libor Market Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 182-200.
    4. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    5. Meng, Xiangyi & Zhang, Jian-Wei & Guo, Hong, 2016. "Quantum Brownian motion model for the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 281-288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baaquie, Belal E. & Yang, Cao, 2009. "Empirical analysis of quantum finance interest rates models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2666-2681.
    2. Pan Tang & Belal E. Baaquie & Xin Du & Ying Zhang, 2016. "Linearized Hamiltonian of the LIBOR market model: analytical and empirical results," Applied Economics, Taylor & Francis Journals, vol. 48(10), pages 878-891, February.
    3. Carol Alexander & Dimitri Lvov, 2003. "Statistical Properties of Forward Libor Rates," ICMA Centre Discussion Papers in Finance icma-dp2003-03, Henley Business School, University of Reading.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    6. Jacques Van Appel & Thomas A. Mcwalter, 2018. "Efficient Long-Dated Swaption Volatility Approximation In The Forward-Libor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-26, June.
    7. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    8. Jaka Gogala & Joanne E. Kennedy, 2017. "CLASSIFICATION OF TWO- AND THREE-FACTOR TIME-HOMOGENEOUS SEPARABLE LMMs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-44, March.
    9. Raoul Pietersz & Marcel Regenmortel, 2006. "Generic market models," Finance and Stochastics, Springer, vol. 10(4), pages 507-528, December.
      • Pietersz, R. & van Regenmortel, M., 2005. "Generic Market Models," ERIM Report Series Research in Management ERS-2005-010-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
      • Raoul Pietersz & Marcel van Regenmortel, 2005. "Generic Market Models," Finance 0502009, University Library of Munich, Germany.
    10. Pierre Henry-Labordere, 2006. "Unifying the BGM and SABR Models: A short Ride in Hyperbolic Geometry," Papers physics/0602102, arXiv.org.
    11. Jensen, Malene Shin & Svenstrup, Mikkel, 2002. "Efficient Control Variates and Strategies for Bermudan Swaptions in a Libor Market Model," Finance Working Papers 02-23, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    12. Igor P. Rivera & Enzo D'Antonio di Vito & Andrés Fundia, 2011. "Valuación de Swaptions Bermuda basada en el modelo LIBOR adaptado a vectores frontera," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 77-92.
    13. Zühlsdorff, Christian, 2002. "Extended Libor Market Models with Affine and Quadratic Volatility," Bonn Econ Discussion Papers 6/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    14. Eymen Errais & Fabio Mercurio, 2005. "Yes, Libor Models can capture Interest Rate Derivatives Skew : A Simple Modelling Approach," Computing in Economics and Finance 2005 192, Society for Computational Economics.
    15. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    16. Andersen, Leif & Andreasen, Jesper, 2001. "Factor dependence of Bermudan swaptions: fact or fiction?," Journal of Financial Economics, Elsevier, vol. 62(1), pages 3-37, October.
    17. Lixin Wu & Fan Zhang, 2008. "Fast swaption pricing under the market model with a square-root volatility process," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 163-180.
    18. Baaquie, Belal E., 2010. "Interest rates in quantum finance: Caps, swaptions and bond options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 296-314.
    19. L. Steinruecke & R. Zagst & A. Swishchuk, 2015. "The Markov-switching jump diffusion LIBOR market model," Quantitative Finance, Taylor & Francis Journals, vol. 15(3), pages 455-476, March.
    20. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:1287-1308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.