IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00666751.html
   My bibliography  Save this paper

Yield Curve Smoothing and Residual Variance of Fixed Income Positions

Author

Listed:
  • Raphaël Douady

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We model the yield curve in any given country as an object lying in an infinite-dimensional Hilbert space, the evolution of which is driven by what is known as a cylindrical Brownian motion. We assume that volatilities and correlations do not depend on rates (which hence are Gaussian). We prove that a principal component analysis (PCA) can be made. These components are called eigenmodes or principal deformations of the yield curve in this space. We then proceed to provide the best approximation of the curve evolution by a Gaussian Heath-Jarrow-Morton model that has a given finite number of factors. Finally, we describe a method, based on finite elements, to compute the eigenmodes using historical interest rate data series and show how it can be used to compute approximate hedges which optimize a criterion depending on transaction costs and residual variance.

Suggested Citation

  • Raphaël Douady, 2013. "Yield Curve Smoothing and Residual Variance of Fixed Income Positions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00666751, HAL.
  • Handle: RePEc:hal:cesptp:hal-00666751
    DOI: 10.1007/978-3-319-02069-3_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean-Philippe Bouchaud & Nicolas Sagna & Rama Cont & Nicole El-Karoui & Marc Potters, 1999. "Phenomenology of the interest rate curve," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 209-232.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. D. P. Kennedy, 1994. "The Term Structure Of Interest Rates As A Gaussian Random Field," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 247-258, July.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Schaefer, Stephen M. & Schwartz, Eduardo S., 1984. "A Two-Factor Model of the Term Structure: An Approximate Analytical Solution," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 19(4), pages 413-424, December.
    6. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. repec:dau:papers:123456789/5374 is not listed on IDEAS
    9. Farshid Jamshidian, 1993. "Option and Futures Evaluation With Deterministic Volatilities1," Mathematical Finance, Wiley Blackwell, vol. 3(2), pages 149-159, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Karbach, 2024. "Heat modulated affine stochastic volatility models for forward curve dynamics," Papers 2409.13070, arXiv.org.
    2. Raphaël Douady & Zeyu Cao, 2020. "Sabr Type Stochastic Volatility Operator In Hilbert Space," Working Papers hal-03018478, HAL.
    3. Rene Carmona & Michael Tehranchi, 2004. "A Characterization of Hedging Portfolios for Interest Rate Contingent Claims," Papers math/0407119, arXiv.org.
    4. Jean-Philippe Bouchaud & Nicolas Sagna & Rama Cont & Nicole El-Karoui & Marc Potters, 1999. "Phenomenology of the interest rate curve," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 209-232.
    5. Rama Cont, 2005. "Modeling Term Structure Dynamics: An Infinite Dimensional Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(03), pages 357-380.
    6. Jean-Philippe BOUCHAUD & Rama CONT & Nicole EL KAROUI & Marc POTTERS & Nicolas SAGNA, 1997. "Phenomenology of the interest curve," Finance 9712009, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    2. repec:dau:papers:123456789/5374 is not listed on IDEAS
    3. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    4. repec:uts:finphd:40 is not listed on IDEAS
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    7. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    8. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    9. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    10. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    13. repec:wyi:journl:002108 is not listed on IDEAS
    14. Calum G. Turvey, 2006. "Managing food industry business and financial risks with commodity-linked credit instruments," Agribusiness, John Wiley & Sons, Ltd., vol. 22(4), pages 523-545.
    15. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    16. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    17. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    18. Zhang, Kun & Liu, Jing & Wang, Erkang & Wang, Jin, 2017. "Quantifying risks with exact analytical solutions of derivative pricing distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 757-766.
    19. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    20. repec:wyi:journl:002109 is not listed on IDEAS
    21. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    22. Berardi, Andrea, 1995. "Estimating the Cox, ingersoll and Ross model of the term structure: a multivariate approach," Ricerche Economiche, Elsevier, vol. 49(1), pages 51-74, March.
    23. Jiang, George J., 1997. "A generalized one-factor term structure model and pricing of interest rate derivative securities," Research Report 97A34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    24. Dennis Kristensen, 2004. "A Semiparametric Single-Factor Model of the Term Structure," FMG Discussion Papers dp501, Financial Markets Group.

    More about this item

    Keywords

    Cylindrical Brownian motion; Term structure of interest rates; Yield curve; Heath-Jarrow-Morton model; Fixed-income models; Asymptotic arbitrage;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00666751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.