IDEAS home Printed from https://ideas.repec.org/a/wsi/ijitdm/v15y2016i02ns0219622016500085.html
   My bibliography  Save this article

Improving Forecasting Performance by Exploiting Expert Knowledge: Evidence from Guangzhou Port

Author

Listed:
  • Anqiang Huang

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, P. R. China)

  • Han Qiao

    (#x2020;School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Shouyang Wang

    (#x2021;Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • John Liu

    (#xA7;College of Business, City University of Hong Kong, Kowloon, Hong Kong (SAR))

Abstract

Expert knowledge has been proved by substantial studies to be contributory to higher forecasting performance; meanwhile, its application is criticized and opposed by some groups for biases and inconsistency inherent in experts’ subjective judgment. This paper proposes a new approach to improving forecasting performance, which takes advantage of expert knowledge by constructing a constraint equation rather than directly adjusting the predicted values by experts. For the comparison purpose, the proposed approach, together with several widely used models including ARIMA, BP-ANN and the judgment model (JM), is applied to forecasting the container throughput of Guangzhou Port, which is one of the most important ports of China. Forecasting performances of the above models are compared and the results clearly show superiority of the proposed approach over its rivals, which implies that expert knowledge will make positive contribution as long as it is used in a right way.

Suggested Citation

  • Anqiang Huang & Han Qiao & Shouyang Wang & John Liu, 2016. "Improving Forecasting Performance by Exploiting Expert Knowledge: Evidence from Guangzhou Port," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 387-401, March.
  • Handle: RePEc:wsi:ijitdm:v:15:y:2016:i:02:n:s0219622016500085
    DOI: 10.1142/S0219622016500085
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219622016500085
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219622016500085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanders, Nada R. & Manrodt, Karl B., 2003. "The efficacy of using judgmental versus quantitative forecasting methods in practice," Omega, Elsevier, vol. 31(6), pages 511-522, December.
    2. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    3. Fildes, Robert & Stekler, Herman, 2002. "Reply to the comments on 'The state of macroeconomic forecasting'," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 503-505, December.
    4. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    5. Stewart, Thomas R. & Roebber, Paul J. & Bosart, Lance F., 1997. "The Importance of the Task in Analyzing Expert Judgment," Organizational Behavior and Human Decision Processes, Elsevier, vol. 69(3), pages 205-219, March.
    6. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    7. Clemen, Robert T. & Murphy, Allan H. & Winkler, Robert L., 1995. "Screening probability forecasts: contrasts between choosing and combining," International Journal of Forecasting, Elsevier, vol. 11(1), pages 133-145, March.
    8. Stephen J. Hoch & David A. Schkade, 1996. "A Psychological Approach to Decision Support Systems," Management Science, INFORMS, vol. 42(1), pages 51-64, January.
    9. Seifert, Matthias & Hadida, Allègre L., 2013. "On the relative importance of linear model and human judge(s) in combined forecasting," Organizational Behavior and Human Decision Processes, Elsevier, vol. 120(1), pages 24-36.
    10. Goodwin, P & Wright, G, 1994. "Heuristics, biases and improvement strategies in judgmental time series forecasting," Omega, Elsevier, vol. 22(6), pages 553-568, November.
    11. Fischer, Ilan & Harvey, Nigel, 1999. "Combining forecasts: What information do judges need to outperform the simple average?," International Journal of Forecasting, Elsevier, vol. 15(3), pages 227-246, July.
    12. Harvey, Nigel & Harries, Clare, 2004. "Effects of judges' forecasting on their later combination of forecasts for the same outcomes," International Journal of Forecasting, Elsevier, vol. 20(3), pages 391-409.
    13. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    14. Donna Katzman McClish & Stephen H. Powell, 1989. "How Well Can Physicians Estimate Mortality in a Medical Intensive Care Unit?," Medical Decision Making, , vol. 9(2), pages 125-132, June.
    15. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hongtao & Bai, Juncheng & Li, Yongwu, 2019. "A novel secondary decomposition learning paradigm with kernel extreme learning machine for multi-step forecasting of container throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anqiang Huang & Kin Keung Lai & Han Qiao & Shouyang Wang & Zhenji Zhang, 2018. "Does Interval Knowledge Sharpen Forecasting Models? Evidence from China’s Typical Ports," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 467-483, March.
    2. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    3. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    4. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    5. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    6. Seifert, Matthias & Hadida, Allègre L., 2013. "On the relative importance of linear model and human judge(s) in combined forecasting," Organizational Behavior and Human Decision Processes, Elsevier, vol. 120(1), pages 24-36.
    7. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    8. De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
    9. Philip Hans Franses, 2021. "Modeling Judgment in Macroeconomic Forecasts," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 401-417, December.
    10. Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
    11. Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
    12. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    13. Singleton, Carl & Reade, J. James & Brown, Alasdair, 2020. "Going with your gut: The (In)accuracy of forecast revisions in a football score prediction game," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 89(C).
    14. repec:cup:judgdm:v:13:y:2018:i:1:p:1-22 is not listed on IDEAS
    15. Schmidt, Torsten & Vosen, Simeon, 2012. "Using Internet Data to Account for Special Events in Economic Forecasting," Ruhr Economic Papers 382, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
    17. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    18. Mandeep K. Dhami & Jeryl L. Mumpower, 2018. "Kenneth R. Hammond’s contributions to the study of judgment and decision making," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 13(1), pages 1-22, January.
    19. Simón Sosvilla-Rivero & María del Carmen Ramos-Herrera, 2018. "Inflation, real economic growth and unemployment expectations: an empirical analysis based on the ECB survey of professional forecasters," Applied Economics, Taylor & Francis Journals, vol. 50(42), pages 4540-4555, September.
    20. Döpke, Jörg & Fritsche, Ulrich & Waldhof, Gaby, 2017. "Theories, techniques and the formation of German business cycle forecasts. Evidence from a survey among professional forecasters," Working Papers 2, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    21. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:15:y:2016:i:02:n:s0219622016500085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijitdm/ijitdm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.