IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v07y2016i02ns2010007816500032.html
   My bibliography  Save this article

The Effect Of Development On The Climate Sensitivity Of Electricity Demand In India

Author

Listed:
  • ESHITA GUPTA

    (Teri University, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, Delhi 110070, India)

Abstract

The climate sensitivity of electricity demand in India is likely to be highly sensitive to growth in income. Thus, both intensive and extensive adjustments in cooling and heating will play an important role in determining future climate change impacts on electricity demand. This paper utilizes a national level panel dataset of 28 Indian states for the period 2005–2009. The preferred estimates indicate that climate change will increase electricity demand by 6.7% with 4% p.a. GDP growth and 8.5% with 6% p.a. GDP growth in 2030 over the reference scenario of no climate change. This reflects the fact that the estimated marginal effect of a hotter climate is greater when income is higher. Over 50% of the climate change impacts will be due to extensive adjustments as the current penetration of space conditioning equipments such as air conditioners is very low.

Suggested Citation

  • Eshita Gupta, 2016. "The Effect Of Development On The Climate Sensitivity Of Electricity Demand In India," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-49, May.
  • Handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500032
    DOI: 10.1142/S2010007816500032
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007816500032
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007816500032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2013. "Seasonal temperature variations and energy demand," Climatic Change, Springer, vol. 116(3), pages 805-825, February.
    2. Chang, Yoosoon & Martinez-Chombo, Eduardo, 2003. "Electricity Demand Analysis Using Cointegration and Error-Correction Models with Time Varying Parameters: The Mexican Case," Working Papers 2003-08, Rice University, Department of Economics.
    3. Guilherme Depaula & Robert Mendelsohn, 2010. "Development And The Impact Of Climate Change On Energy Demand: Evidence From Brazil," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(03), pages 187-208.
    4. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.
    5. Sailor, D.J & Pavlova, A.A, 2003. "Air conditioning market saturation and long-term response of residential cooling energy demand to climate change," Energy, Elsevier, vol. 28(9), pages 941-951.
    6. Sailor, David J, 2001. "Relating residential and commercial sector electricity loads to climate—evaluating state level sensitivities and vulnerabilities," Energy, Elsevier, vol. 26(7), pages 645-657.
    7. Masih, Abul M. M. & Masih, Rumi, 1996. "Energy consumption, real income and temporal causality: results from a multi-country study based on cointegration and error-correction modelling techniques," Energy Economics, Elsevier, vol. 18(3), pages 165-183, July.
    8. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    9. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    10. Eshita Gupta, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A Semi-parametric variable coefficient approach," Discussion Papers 12-02, Indian Statistical Institute, Delhi.
    11. Ghosh, Sajal, 2009. "Electricity supply, employment and real GDP in India: evidence from cointegration and Granger-causality tests," Energy Policy, Elsevier, vol. 37(8), pages 2926-2929, August.
    12. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    13. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    14. Sivak, Michael, 2009. "Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries," Energy Policy, Elsevier, vol. 37(4), pages 1382-1384, April.
    15. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    16. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filippo Pavanello & Enrica Cian & Marinella Davide & Malcolm Mistry & Talita Cruz & Paula Bezerra & Dattakiran Jagu & Sebastian Renner & Roberto Schaeffer & André F. P. Lucena, 2021. "Air-conditioning and the adaptation cooling deficit in emerging economies," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Du, Kerui & Yu, Ying & Wei, Chu, 2020. "Climatic impact on China's residential electricity consumption: Does the income level matter?," China Economic Review, Elsevier, vol. 63(C).
    3. Naveen Kumar & Dibyendu Maiti, 2024. "The Dynamic Causal Impact of Climate Change on Economic Activity - A Disaggregated Panel Analysis of India," Working papers 345, Centre for Development Economics, Delhi School of Economics.
    4. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    5. Tamara Sofía Propato & Diego Abelleyra & María Semmartin & Santiago R. Verón, 2021. "Differential sensitivities of electricity consumption to global warming across regions of Argentina," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    6. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eshita Gupta, 2014. "The Effect of development on the climate sensitivity of electricity demand in India," Discussion Papers 14-05, Indian Statistical Institute, Delhi.
    2. Marilyn A. Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    3. Eshita Gupta, 2014. "The Impact of development on the climate sensitivity of electricity demand in India," Discussion Papers 14-08, Indian Statistical Institute, Delhi.
    4. Matthew Ranson & Lauren Morris & Alex Kats-Rubin, 2014. "Climate Change and Space Heating Energy Demand: A Review of the Literature," NCEE Working Paper Series 201407, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Dec 2014.
    5. Li, Jianglong & Yang, Lisha & Long, Houyin, 2018. "Climatic impacts on energy consumption: Intensive and extensive margins," Energy Economics, Elsevier, vol. 71(C), pages 332-343.
    6. Marilyn Brown & Matt Cox & Ben Staver & Paul Baer, 2016. "Modeling climate-driven changes in U.S. buildings energy demand," Climatic Change, Springer, vol. 134(1), pages 29-44, January.
    7. Harish, Santosh & Singh, Nishmeet & Tongia, Rahul, 2020. "Impact of temperature on electricity demand: Evidence from Delhi and Indian states," Energy Policy, Elsevier, vol. 140(C).
    8. Gupta, Eshita, 2012. "Global warming and electricity demand in the rapidly growing city of Delhi: A semi-parametric variable coefficient approach," Energy Economics, Elsevier, vol. 34(5), pages 1407-1421.
    9. Hekkenberg, M. & Moll, H.C. & Uiterkamp, A.J.M. Schoot, 2009. "Dynamic temperature dependence patterns in future energy demand models in the context of climate change," Energy, Elsevier, vol. 34(11), pages 1797-1806.
    10. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    11. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
    12. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    13. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    14. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    15. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    16. Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
    17. Auffhammer, Maximilian & Mansur, Erin T., 2014. "Measuring climatic impacts on energy consumption: A review of the empirical literature," Energy Economics, Elsevier, vol. 46(C), pages 522-530.
    18. Thatcher, Marcus J., 2007. "Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia," Energy, Elsevier, vol. 32(9), pages 1647-1659.
    19. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
    20. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:07:y:2016:i:02:n:s2010007816500032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.