From Data to Stochastic Modeling and Decision Making: What Can We Do Better?
Author
Abstract
Suggested Citation
DOI: 10.1142/S0217595919400128
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Michael C. Fu & Jian-Qiang Hu, 1993. "Second Derivative Sample Path Estimators for the GI/G/m Queue," Management Science, INFORMS, vol. 39(3), pages 359-383, March.
- Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, October.
- Michael C. Fu, 2015. "Stochastic Gradient Estimation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 105-147, Springer.
- Andrew E. B. Lim & J. George Shanthikumar & Gah-Yi Vahn, 2012. "Robust Portfolio Choice with Learning in the Framework of Regret: Single-Period Case," Management Science, INFORMS, vol. 58(9), pages 1732-1746, September.
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
- Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
- Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2019. "Empirical Process Results for Exchangeable Arrays," Papers 1906.11293, arXiv.org, revised May 2020.
- Alexander Frankel & Maximilian Kasy, 2022.
"Which Findings Should Be Published?,"
American Economic Journal: Microeconomics, American Economic Association, vol. 14(1), pages 1-38, February.
- Kasy, Maximilian & Frankel, Alexander, 2018. "Which findings should be published?," MetaArXiv mbvz3, Center for Open Science.
- Kasy, Maximilian, 2011. "A nonparametric test for path dependence in discrete panel data," Economics Letters, Elsevier, vol. 113(2), pages 172-175.
- Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022.
"Breaking Ties: Regression Discontinuity Design Meets Market Design,"
Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
- Atila Abdulkadiroglu & Joshua D. Angrist & Yusuke Narita & Parag A. Pathak, 2019. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Cowles Foundation Discussion Papers 2170R Publication Status:, Cowles Foundation for Research in Economics, Yale University, revised Dec 2020.
- Abdulkadiroglu, Atila & Angrist, Joshua & Narita, Yusuke & Pathak, Parag A., 2019. "Breaking Ties: Regression Discontinuity Design Meets Market Design," IZA Discussion Papers 12205, Institute of Labor Economics (IZA).
- Atila Abdulkadiroglu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2020. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Papers 2101.01093, arXiv.org.
- Atila Abdulkadiroglu & Joshua Angrist & Yusuke Narita & Parag Pathak, 2019. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Working Papers 2019-024, Human Capital and Economic Opportunity Working Group.
- Atila Abdulkadiroglu & Joshua D. Angrist & Yusuke Narita & Parag A. Pathak, 2019. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Cowles Foundation Discussion Papers 2170, Cowles Foundation for Research in Economics, Yale University.
- Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.
- Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
- Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
- Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
- Lux, Thomas, 2020. "Bayesian estimation of agent-based models via adaptive particle Markov chain Monte Carlo," Economics Working Papers 2020-01, Christian-Albrechts-University of Kiel, Department of Economics.
- Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
- Li, J. & Nott, D.J. & Fan, Y. & Sisson, S.A., 2017. "Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 77-89.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023.
"Amortized neural networks for agent-based model forecasting,"
Papers
2308.05753, arXiv.org.
- Denis Koshelev & Alexey Ponomarenko & Sergei Seleznev, 2023. "Amortized Neural Networks for Agent-Based Model Forecasting," Bank of Russia Working Paper Series wps115, Bank of Russia.
- Debashis Ghosh, 2004. "Semiparametric methods for the binormal model with multiple biomarkers," The University of Michigan Department of Biostatistics Working Paper Series 1046, Berkeley Electronic Press.
- Yao Luo & Peijun Sang, 2022. "Penalized Sieve Estimation of Structural Models," Papers 2204.13488, arXiv.org.
- Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
- Arie Beresteanu & Francesca Molinari, 2008.
"Asymptotic Properties for a Class of Partially Identified Models,"
Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
- Beresteanu, Arie & Molinari, Francesca, 2006. "Asymptotic Properties for a Class of Partially Identified Models," Working Papers 06-07, Cornell University, Center for Analytic Economics.
- Beresteanu, Arie & Molinari, Francesca, 2006. "Asymptotic Properties for a Class of Partially Identified Models," Working Papers 06-04, Duke University, Department of Economics.
- Arie Beresteanu & Francesca Molinari, 2006. "Asymptotic properties for a class of partially identified models," CeMMAP working papers CWP10/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kristi Kuljus & Bo Ranneby, 2020. "Asymptotic normality of generalized maximum spacing estimators for multivariate observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 968-989, September.
More about this item
Keywords
Data analytics; Taylor series expansion; sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:36:y:2019:i:06:n:s0217595919400128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.