IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v321y2025i2p493-502.html
   My bibliography  Save this article

Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs

Author

Listed:
  • Peng, Yijie
  • Fu, Michael C.
  • Hu, Jiaqiao
  • L’Ecuyer, Pierre
  • Tuffin, Bruno

Abstract

We propose a new unbiased stochastic gradient estimator for a family of stochastic models driven by uniform random numbers as inputs. Dropping the requirement that the tails of the density of the input random variables decay smoothly, the estimator extends the applicability of the generalized likelihood ratio (GLR) method. We demonstrate the new estimator for several general classes of input random variates, including independent inverse transform random variates and dependent input random variables governed by an Archimedean copula. We show how the new estimator works in settings such as density estimation, and we illustrate applications to credit risk derivatives. Numerical experiments substantiate broad applicability and flexibility in dealing with discontinuities in the sample performance.

Suggested Citation

  • Peng, Yijie & Fu, Michael C. & Hu, Jiaqiao & L’Ecuyer, Pierre & Tuffin, Bruno, 2025. "Generalized likelihood ratio method for stochastic models with uniform random numbers as inputs," European Journal of Operational Research, Elsevier, vol. 321(2), pages 493-502.
  • Handle: RePEc:eee:ejores:v:321:y:2025:i:2:p:493-502
    DOI: 10.1016/j.ejor.2024.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    2. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    3. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    4. Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
    5. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    6. Zhiyong Chen & Paul Glasserman, 2008. "Sensitivity estimates for portfolio credit derivatives using Monte Carlo," Finance and Stochastics, Springer, vol. 12(4), pages 507-540, October.
    7. Michael C. Fu & Jian-Qiang Hu, 1993. "Second Derivative Sample Path Estimators for the GI/G/m Queue," Management Science, INFORMS, vol. 39(3), pages 359-383, March.
    8. Sridhar Bashyam & Michael C. Fu, 1998. "Optimization of (s, S) Inventory Systems with Random Lead Times and a Service Level Constraint," Management Science, INFORMS, vol. 44(12-Part-2), pages 243-256, December.
    9. Pierre L'Ecuyer & Peter W. Glynn, 1994. "Stochastic Optimization by Simulation: Convergence Proofs for the GI/G/1 Queue in Steady-State," Management Science, INFORMS, vol. 40(11), pages 1562-1578, November.
    10. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    11. Rajan Suri & Michael A. Zazanis, 1988. "Perturbation Analysis Gives Strongly Consistent Sensitivity Estimates for the M/G/1 Queue," Management Science, INFORMS, vol. 34(1), pages 39-64, January.
    12. Bernd Heidergott & Taoying Farenhorst-Yuan, 2010. "Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy," Operations Research, INFORMS, vol. 58(3), pages 706-718, June.
    13. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    14. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    15. Lei, Lei & Peng, Yijie & Fu, Michael C. & Hu, Jian-Qiang, 2023. "Copula sensitivity analysis for portfolio credit derivatives," European Journal of Operational Research, Elsevier, vol. 308(1), pages 455-466.
    16. Michael C. Fu, 2015. "Stochastic Gradient Estimation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 105-147, Springer.
    17. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    18. Heidergott, Bernd, 1999. "Optimisation of a single-component maintenance system: A smoothed perturbation analysis approach," European Journal of Operational Research, Elsevier, vol. 119(1), pages 181-190, November.
    19. Michael C. Fu & Jian-Qiang Hu, 1999. "Efficient Design and Sensitivity Analysis of Control Charts Using Monte Carlo Simulation," Management Science, INFORMS, vol. 45(3), pages 395-413, March.
    20. Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
    21. Michael C. Fu, 1994. "Sample Path Derivatives for (s, S) Inventory Systems," Operations Research, INFORMS, vol. 42(2), pages 351-364, April.
    22. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
    2. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.
    3. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    4. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    5. Zhaolin Hu & Dali Zhang, 2018. "Utility‐based shortfall risk: Efficient computations via Monte Carlo," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 378-392, August.
    6. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    7. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    8. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    9. Bernd Heidergott & Warren Volk-Makarewicz, 2016. "A Measure-Valued Differentiation Approach to Sensitivities of Quantiles," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 293-317, February.
    10. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    11. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
    12. Sumit Kunnumkal & Huseyin Topaloglu, 2009. "A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 477-504, December.
    13. Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
    14. Xin Yun & L. Jeff Hong & Guangxin Jiang & Shouyang Wang, 2019. "On gamma estimation via matrix kriging," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 393-410, August.
    15. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    16. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    17. Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
    18. Sumit Kunnumkal & Huseyin Topaloglu, 2008. "Using Stochastic Approximation Methods to Compute Optimal Base-Stock Levels in Inventory Control Problems," Operations Research, INFORMS, vol. 56(3), pages 646-664, June.
    19. Shaolong Tong & Guangwu Liu, 2016. "Importance Sampling for Option Greeks with Discontinuous Payoffs," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 223-235, May.
    20. Huseyin Topaloglu, 2008. "A Stochastic Approximation Method to Compute Bid Prices in Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 596-610, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:2:p:493-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.