IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v78y2013i3p373-404.html
   My bibliography  Save this article

Nonsingularity in matrix conic optimization induced by spectral norm via a smoothing metric projector

Author

Listed:
  • Liwei Zhang
  • Shaoyan Guo
  • Jia Wu
  • Shoulin Hao

Abstract

Matrix conic optimization induced by spectral norm (MOSN) has found important applications in many fields. This paper focus on the optimality conditions and perturbation analysis of the MOSN problem. The Karush–Kuhn–Tucker (KKT) conditions of the MOSN problem can be reformulated as a nonsmooth system via the metric projector over the cone. We show in this paper, the nonsingularity of the Clarke’s generalized Jacobian of the smoothing KKT system constructed by a smoothing metric projector, the strong regularity and the strong second-order sufficient condition under constraint nondegeneracy are all equivalent. Moreover, this nonsingularity is used in several globally convergent smoothing Newton methods. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Liwei Zhang & Shaoyan Guo & Jia Wu & Shoulin Hao, 2013. "Nonsingularity in matrix conic optimization induced by spectral norm via a smoothing metric projector," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 373-404, December.
  • Handle: RePEc:spr:mathme:v:78:y:2013:i:3:p:373-404
    DOI: 10.1007/s00186-013-0449-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-013-0449-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-013-0449-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen M. Robinson, 1980. "Strongly Regular Generalized Equations," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 43-62, February.
    2. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    2. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    3. Diethard Klatte & Bernd Kummer, 2013. "Aubin property and uniqueness of solutions in cone constrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 291-304, June.
    4. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2011. "Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 364-389, February.
    5. B. S. Mordukhovich & T. T. A. Nghia & R. T. Rockafellar, 2015. "Full Stability in Finite-Dimensional Optimization," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 226-252, February.
    6. M. Durea & R. Strugariu, 2011. "On parametric vector optimization via metric regularity of constraint systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 409-425, December.
    7. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    8. Liwei Zhang & Shengzhe Gao & Saoyan Guo, 2019. "Statistical Inference of Second-Order Cone Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-17, April.
    9. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    10. Francisco Aragón Artacho & Boris Mordukhovich, 2011. "Enhanced metric regularity and Lipschitzian properties of variational systems," Journal of Global Optimization, Springer, vol. 50(1), pages 145-167, May.
    11. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    12. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2023. "A multi-scale control framework for urban traffic control with connected and automated vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 175(C).
    13. Shun Arahata & Takayuki Okuno & Akiko Takeda, 2023. "Complexity analysis of interior-point methods for second-order stationary points of nonlinear semidefinite optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 555-598, November.
    14. J. Han & D. Sun, 1997. "Newton and Quasi-Newton Methods for Normal Maps with Polyhedral Sets," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 659-676, September.
    15. Qi Zhao & Zhongwen Chen, 2018. "An SQP-type Method with Superlinear Convergence for Nonlinear Semidefinite Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(03), pages 1-25, June.
    16. Nguyen Qui, 2014. "Stability for trust-region methods via generalized differentiation," Journal of Global Optimization, Springer, vol. 59(1), pages 139-164, May.
    17. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    18. U. Felgenhauer, 1999. "Regularity Properties of Optimal Controls with Application to Discrete Approximation," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 97-110, July.
    19. Ilker Birbil, S. & Gürkan, G. & Listes, O.L., 2004. "Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints : Sample-Path Analysis," Discussion Paper 2004-25, Tilburg University, Center for Economic Research.
    20. A. F. Izmailov & M. V. Solodov, 2015. "Newton-Type Methods: A Broader View," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 577-620, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:78:y:2013:i:3:p:373-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.