IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v29y2012i05ns0217595912500315.html
   My bibliography  Save this article

Heuristic And Exact Solution Method For Convex Nonlinear Knapsack Problem

Author

Listed:
  • BIN ZHANG

    (Lingnan College, Sun Yat-Sen University, Guangzhou 510275, P. R. China)

  • BO CHEN

    (School of Management, Hefei University of Technology, Hefei, Anhui 230009, P. R. China)

Abstract

In this paper, we consider a class of convex nonlinear knapsack problems in which all decision variables are integer and the objective and knapsack functions are nonlinear. This generalized problem is characterized by positive marginal cost (PMC) and increasing marginal loss-cost ratio (IMLCR). By analyzing the structural properties of the problem, we develop an efficient heuristic and propose search and branching rules to improve the branch and bound method for solving exact solution. Numerical study is done for showing the effectiveness of the proposed heuristic and the modified branch and bound method.

Suggested Citation

  • Bin Zhang & Bo Chen, 2012. "Heuristic And Exact Solution Method For Convex Nonlinear Knapsack Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-14.
  • Handle: RePEc:wsi:apjorx:v:29:y:2012:i:05:n:s0217595912500315
    DOI: 10.1142/S0217595912500315
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595912500315
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595912500315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny Gurevsky & Dmitry Kopelevich & Sergey Kovalev & Mikhail Y. Kovalyov, 2023. "Integer knapsack problems with profit functions of the same value range," 4OR, Springer, vol. 21(3), pages 405-419, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    2. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    3. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    4. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    5. Alidaee, Bahram, 2014. "Zero duality gap in surrogate constraint optimization: A concise review of models," European Journal of Operational Research, Elsevier, vol. 232(2), pages 241-248.
    6. repec:ehu:biltok:31248 is not listed on IDEAS
    7. Justin A. Sirignano & Gerry Tsoukalas & Kay Giesecke, 2016. "Large-Scale Loan Portfolio Selection," Operations Research, INFORMS, vol. 64(6), pages 1239-1255, December.
    8. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    9. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    10. G. Gnecco & M. Sanguineti, 2010. "Suboptimal Solutions to Dynamic Optimization Problems via Approximations of the Policy Functions," Journal of Optimization Theory and Applications, Springer, vol. 146(3), pages 764-794, September.
    11. Bueno, L.F. & Haeser, G. & Kolossoski, O., 2024. "On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1217-1222.
    12. Bagloee, Saeed Asadi & Sarvi, Majid & Wallace, Mark, 2016. "Bicycle lane priority: Promoting bicycle as a green mode even in congested urban area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 87(C), pages 102-121.
    13. S. Dempe & F. Mefo Kue, 2017. "Solving discrete linear bilevel optimization problems using the optimal value reformulation," Journal of Global Optimization, Springer, vol. 68(2), pages 255-277, June.
    14. Teles, João P. & Castro, Pedro M. & Matos, Henrique A., 2013. "Univariate parameterization for global optimization of mixed-integer polynomial problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 613-625.
    15. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2021. "A General Purpose Exact Solution Method for Mixed Integer Concave Minimization Problems," IIMA Working Papers WP 2021-03-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    16. Andrzej Karbowski, 2021. "Generalized Benders Decomposition Method to Solve Big Mixed-Integer Nonlinear Optimization Problems with Convex Objective and Constraints Functions," Energies, MDPI, vol. 14(20), pages 1-18, October.
    17. Farnaz Ghazi Nezami & Mojtaba Heydar, 2019. "Energy-aware Economic Production Quantity model with variable energy pricing," Operational Research, Springer, vol. 19(1), pages 201-218, March.
    18. Wiesława T. Obuchowska, 2015. "Irreducible Infeasible Sets in Convex Mixed-Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 747-766, September.
    19. Benjamin Lev, 2007. "Book Reviews," Interfaces, INFORMS, vol. 37(2), pages 197-204, April.
    20. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:29:y:2012:i:05:n:s0217595912500315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.