IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v28y2011i05ns0217595911003491.html
   My bibliography  Save this article

Option Pricing For Weighted Average Of Asset Prices

Author

Listed:
  • MASATOSHI MIYAKE

    (School of Management, Tokyo University of Science, Kuki-shi, Saitama, 346-8512, Japan)

  • HIROSHI INOUE

    (School of Management, Tokyo University of Science, Kuki-shi, Saitama, 346-8512, Japan)

  • SATORU TAKAHASHI

    (School of Management, Tokyo University of Science, Kuki-shi, Saitama, 346-8512, Japan)

Abstract

Average options are path-dependent and have payoffs which depend on the average price over a fixed period leading up to the maturity date. This option is of interest and important for thinly-traded assets since price manipulation is prohibited, and both the investor and issuer may enjoy a certain degree of protection from the caprice of the market. However, to deal with unexpected situations incurred the usual simple average options may not be sufficient. Therefore, in this paper, we consider to propose a more general weight instead of the simple average, for which it may be possible to control the weight in the light of the unexpected circumstances. Further, we derive approximate solutions for the weighted sums of asset prices, and in order for these formulae to be applicable some adjustment must be taken into account along with Monte Carlo simulations. Finally, some comparisons for these results are made.

Suggested Citation

  • Masatoshi Miyake & Hiroshi Inoue & Satoru Takahashi, 2011. "Option Pricing For Weighted Average Of Asset Prices," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(05), pages 651-672.
  • Handle: RePEc:wsi:apjorx:v:28:y:2011:i:05:n:s0217595911003491
    DOI: 10.1142/S0217595911003491
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595911003491
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595911003491?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Buchen & Otto Konstandatos, 2005. "A New Method Of Pricing Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 245-259, April.
    2. George Chang, 2018. "Examining the Efficiency of American Put Option Pricing by Monte Carlo Methods with Variance Reduction," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(2), pages 10-13, February.
    3. Jiao Li, 2016. "Trading VIX Futures under Mean Reversion with Regime Switching," Papers 1605.07945, arXiv.org, revised Jun 2016.
    4. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    5. Zaheer Imdad & Tusheng Zhang, 2014. "Pricing European options in a delay model with jumps," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-13.
    6. San-Lin Chung & Mark Shackleton, 2005. "On the use and improvement of Hull and White's control variate technique," Applied Financial Economics, Taylor & Francis Journals, vol. 15(16), pages 1171-1179.
    7. Tarn Driffield & Peter C. Smith, 2007. "A Real Options Approach to Watchful Waiting: Theory and an Illustration," Medical Decision Making, , vol. 27(2), pages 178-188, March.
    8. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    9. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    10. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    11. Moriconi, L., 2007. "Delta hedged option valuation with underlying non-Gaussian returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 343-350.
    12. Ulm, Eric R., 2014. "Analytic solution for ratchet guaranteed minimum death benefit options under a variety of mortality laws," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 14-23.
    13. Xiaolin Luo & Pavel V. Shevchenko, 2014. "Fast and simple method for pricing exotic options using Gauss–Hermite quadrature on a cubic spline interpolation," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-31.
    14. Conrad, Jon M. & Kotani, Koji, 2005. "When to drill? Trigger prices for the Arctic National Wildlife Refuge," Resource and Energy Economics, Elsevier, vol. 27(4), pages 273-286, November.
    15. Philippe Jacquinot & Nikolay Sukhomlin, 2010. "A direct formulation of implied volatility in the Black-Scholes model," Post-Print hal-02533014, HAL.
    16. Gao, Pei-wang, 2009. "Options strategies with the risk adjustment," European Journal of Operational Research, Elsevier, vol. 192(3), pages 975-980, February.
    17. Saphores, Jean-Daniel & Gravel, Éric & Bernard, Jean-Thomas, 2003. "Environmental Impact Assessment and Investment under Uncertainty. An Application to Power Grid Interconnection," Cahiers de recherche 0303, GREEN.
    18. L. Ingber & J.K. Wilson, 1999. "Volatility of volatility of financial markets," Lester Ingber Papers 99vv, Lester Ingber.
    19. Alexander Buryak & Ivan Guo, 2014. "New analytic approach to address Put - Call parity violation due to discrete dividends," Papers 1407.7328, arXiv.org.
    20. Ingber, Lester, 2000. "High-resolution path-integral development of financial options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 529-558.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:28:y:2011:i:05:n:s0217595911003491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.