IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v28y2011i03ns0217595911003247.html
   My bibliography  Save this article

A New Fuzzy Multi Criteria Decision Making Model For Open Pit Mines Equipment Selection

Author

Listed:
  • ABBAS AGHAJANI BAZZAZI

    (Department of Mining Engineering, Savadkooh Branch Islamic Azad University, Savadkooh, Iran)

  • MORTEZA OSANLOO

    (Department of Mining & Metallurgical Engineering Amirkabir University of Technology, Tehran, Iran)

  • BEHROOZ KARIMI

    (Department of Industrial Engineering Amirkabir University of Technology, Tehran, Iran)

Abstract

Nowadays, the capital cost of open-pit mining equipment is very high so any mistake in the selection of quantity, type and capacity of equipment may cause irreparable impact on the net present value of mining project. Mine planning engineers generally use their intuition and experience in decision making even though equipment selection is a complex multi criteria decision problem. Considering the tangible along with intangible factors in the mine equipment selection problem, this paper proposes a new method of multi criteria decision making (MCDM) that makes it possible to select the optimal equipment that satisfies the decision maker. In a real-world situation, because of incomplete or non-obtainable information, the data (attributes) are often not deterministic but they are usually fuzzy-imprecise. Our proposed model considers objective, critical, and subjective factors as the three main common factors in equipment selection analysis. The last two factors, critical and subjective factors, are defined by decision maker's judgments for more adoption with real world problems. A case study is presented to illustrate the use of the proposed model and to demonstrate the capability of the model. The result of this study shows significant reduction of time consumption of calculation and good precision compared to customary methods such as Chang's fuzzy AHP method.

Suggested Citation

  • Abbas Aghajani Bazzazi & Morteza Osanloo & Behrooz Karimi, 2011. "A New Fuzzy Multi Criteria Decision Making Model For Open Pit Mines Equipment Selection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(03), pages 279-300.
  • Handle: RePEc:wsi:apjorx:v:28:y:2011:i:03:n:s0217595911003247
    DOI: 10.1142/S0217595911003247
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595911003247
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595911003247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Gang & Law, Rob & Vu, Huy Quan & Rong, Jia, 2013. "Discovering the hotel selection preferences of Hong Kong inbound travelers using the Choquet Integral," Tourism Management, Elsevier, vol. 36(C), pages 321-330.
    2. Miodrag Čelebić & Dragoljub Bajić & Sanja Bajić & Mirjana Banković & Duško Torbica & Aleksej Milošević & Dejan Stevanović, 2024. "Development of an Integrated Model for Open-Pit-Mine Discontinuous Haulage System Optimization," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    3. Aleksandr Rakhmangulov & Konstantin Burmistrov & Nikita Osintsev, 2024. "Multi-Criteria System’s Design Methodology for Selecting Open Pits Dump Trucks," Sustainability, MDPI, vol. 16(2), pages 1-34, January.
    4. Branimir Farkaš & Ana Hrastov, 2021. "Multi-Criteria Analysis for the Selection of the Optimal Mining Design Solution—A Case Study on Quarry “Tambura”," Energies, MDPI, vol. 14(11), pages 1-18, May.
    5. Michał Patyk & Przemysław Bodziony & Zbigniew Krysa, 2021. "A Multiple Criteria Decision Making Method to Weight the Sustainability Criteria of Equipment Selection for Surface Mining," Energies, MDPI, vol. 14(11), pages 1-14, May.
    6. Mojtaba Yari & Raheb Bagherpour & Saeed Jamali, 2017. "Development of an evaluation system for blasting patterns to provide efficient production," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 975-984, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    5. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    7. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    8. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    10. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    11. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    12. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    13. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    14. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    15. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    16. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    17. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    18. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    19. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:28:y:2011:i:03:n:s0217595911003247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.