IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3200-d565636.html
   My bibliography  Save this article

Multi-Criteria Analysis for the Selection of the Optimal Mining Design Solution—A Case Study on Quarry “Tambura”

Author

Listed:
  • Branimir Farkaš

    (Faculty of Mining Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia)

  • Ana Hrastov

    (Nikole Tesle 21, 47280 Ozalj, Croatia)

Abstract

Mining design is usually evaluated with different multiple-criteria decision-making (MCDM) methods when it comes to large open pit or underground ore mines, but it is not used on quarry sites. Since Croatia is mostly mining stone, the implementation of such methods in decision making of the quarry mine design is imperative but left out. In this paper, the PROMETHEE II and AHP decision-making methods are implemented on the quarry site to find out the best final quarry design contour. By implementing the MCDM methods, the best quarry model was chosen based on 22 different criteria parameters out of three final quarry designs. The chosen model is not only financially sound but also has the least environmental impact.

Suggested Citation

  • Branimir Farkaš & Ana Hrastov, 2021. "Multi-Criteria Analysis for the Selection of the Optimal Mining Design Solution—A Case Study on Quarry “Tambura”," Energies, MDPI, vol. 14(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3200-:d:565636
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas Aghajani Bazzazi & Morteza Osanloo & Behrooz Karimi, 2011. "A New Fuzzy Multi Criteria Decision Making Model For Open Pit Mines Equipment Selection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 28(03), pages 279-300.
    2. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, January.
    3. Saaty, Thomas L., 1994. "Highlights and critical points in the theory and application of the Analytic Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 74(3), pages 426-447, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendrik & Yin Yuan & Akhmad Fauzi & Widiatmaka & Dyah Tjahyandari Suryaningtyas & Florentinus Firdiyono & Yang Yao, 2022. "Determination of the Red Mud Industrial Cluster Sites in Indonesia Based on Sustainability Aspect and Waste Management Analysis through PROMETHEE," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niki Kunene, K. & Roland Weistroffer, H., 2008. "An approach for predicting and describing patient outcome using multicriteria decision analysis and decision rules," European Journal of Operational Research, Elsevier, vol. 185(3), pages 984-997, March.
    2. Borghetti, Fabio & Carra, Martina & Besson, Carlotta & Matarrese, Elisabetta & Maja, Roberto & Barabino, Benedetto, 2024. "Evaluating alternative fuels for a bus fleet: An Italian case," Transport Policy, Elsevier, vol. 154(C), pages 1-15.
    3. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    4. Fancello, Giovanna & Tsoukiàs, Alexis, 2021. "Learning urban capabilities from behaviours. A focus on visitors values for urban planning," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    5. Bana e Costa, Carlos A. & Oliveira, Carlos S. & Vieira, Victor, 2008. "Prioritization of bridges and tunnels in earthquake risk mitigation using multicriteria decision analysis: Application to Lisbon," Omega, Elsevier, vol. 36(3), pages 442-450, June.
    6. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    7. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    8. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    9. Kaveh Madani & Laura Read & Laleh Shalikarian, 2014. "Voting Under Uncertainty: A Stochastic Framework for Analyzing Group Decision Making Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1839-1856, May.
    10. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    11. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    12. Growiec, Jakub, 2018. "Factor-specific technology choice," Journal of Mathematical Economics, Elsevier, vol. 77(C), pages 1-14.
    13. José M. Merigó & Anna M. Gil-Lafuente & Daniel Palacios-Marqués, 2014. "A new method for fuzzy decision making under risk and uncertainty," International Journal of Business Continuity and Risk Management, Inderscience Enterprises Ltd, vol. 5(1), pages 29-42.
    14. Franceschini, Fiorenzo & Maisano, Domenico, 2015. "Checking the consistency of the solution in ordinal semi-democratic decision-making problems," Omega, Elsevier, vol. 57(PB), pages 188-195.
    15. Bouyssou, Denis & Marchant, Thierry, 2007. "An axiomatic approach to noncompensatory sorting methods in MCDM, II: More than two categories," European Journal of Operational Research, Elsevier, vol. 178(1), pages 246-276, April.
    16. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    17. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.
    18. Boris Yatsalo & Sergey Gritsyuk & Terry Sullivan & Benjamin Trump & Igor Linkov, 2016. "Multi-criteria risk management with the use of DecernsMCDA: methods and case studies," Environment Systems and Decisions, Springer, vol. 36(3), pages 266-276, September.
    19. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    20. Becchio, Cristina & Bottero, Marta Carla & Corgnati, Stefano Paolo & Dell’Anna, Federico, 2018. "Decision making for sustainable urban energy planning: an integrated evaluation framework of alternative solutions for a NZED (Net Zero-Energy District) in Turin," Land Use Policy, Elsevier, vol. 78(C), pages 803-817.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3200-:d:565636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.