IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v24y2007i04ns0217595907001401.html
   My bibliography  Save this article

A CHANCE-CONSTRAINED PORTFOLIO SELECTION PROBLEM UNDERt-DISTRIBUTION

Author

Listed:
  • YI WANG

    (Department of Scientific Computing and Applied Softwares, Faculty of Science, Xi'an Jiaotong University, 710049 Xi'an, Shaanxi, China)

  • ZHIPING CHEN

    (Department of Scientific Computing and Applied Softwares, Faculty of Science, Xi'an Jiaotong University, 710049 Xi'an, Shaanxi, China)

  • KECUN ZHANG

    (Department of Scientific Computing and Applied Softwares, Faculty of Science, Xi'an Jiaotong University, 710049 Xi'an, Shaanxi, China)

Abstract

Aimed at better modeling stock returns and finding robustly optimal investment decisions, a new portfolio selection model is proposed in this paper. The model differs from existing ones in following ways: multiple market frictions are taken into account simultaneously; the adopted multivariatet-distribution can capture the well-recognized fat tails in the return data by adding only one more parameter relative to the normal; the downside loss risk is controlled by a chance constraint which, including VaR as a special case, is flexible in terms of adjusting the threshold return and the loss probability level; one important advantage about the combination of the latter two innovations is that the derived asset allocation model can be transformed into a second-order cone program or a linear program, which can be easily solved in polynomial time. Empirical results based on some S&P 500 component stocks not only demonstrate the practicality of our new model, but show how different model parameters could affect the optimal portfolio selection. This is very useful in guiding investors to choose a correct model and to find the investment strategy most suitable for their specific purpose.

Suggested Citation

  • Yi Wang & Zhiping Chen & Kecun Zhang, 2007. "A CHANCE-CONSTRAINED PORTFOLIO SELECTION PROBLEM UNDERt-DISTRIBUTION," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 535-556.
  • Handle: RePEc:wsi:apjorx:v:24:y:2007:i:04:n:s0217595907001401
    DOI: 10.1142/S0217595907001401
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595907001401
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595907001401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kotz,Samuel & Nadarajah,Saralees, 2004. "Multivariate T-Distributions and Their Applications," Cambridge Books, Cambridge University Press, number 9780521826549, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. K. Pagnoncelli & D. Reich & M. C. Campi, 2012. "Risk-Return Trade-off with the Scenario Approach in Practice: A Case Study in Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 707-722, November.
    2. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    2. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    3. Lamboni, Matieyendou, 2022. "Efficient dependency models: Simulating dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 199-217.
    4. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    5. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    6. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    7. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.
    8. Badi H. Baltagi & Georges Bresson & Anoop Chaturvedi & Guy Lacroix, 2022. "Robust Dynamic Space-Time Panel Data Models Using ε-contamination: An Application to Crop Yields and Climate Change," Center for Policy Research Working Papers 254, Center for Policy Research, Maxwell School, Syracuse University.
    9. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    10. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.
    11. Punzo, Antonio & Bagnato, Luca, 2022. "Dimension-wise scaled normal mixtures with application to finance and biometry," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    12. Domínguez-Molina, J. Armando & Rocha-Arteaga, Alfonso, 2007. "On the infinite divisibility of some skewed symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 644-648, March.
    13. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    14. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    15. Balakrishnan, N. & Hashorva, E., 2011. "On Pearson-Kotz Dirichlet distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 948-957, May.
    16. Nason, Guy P., 2006. "On the sum of t and Gaussian random variables," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1280-1286, July.
    17. Thomas Holgersson & Peter Karlsson & Andreas Stephan, 2020. "A risk perspective of estimating portfolio weights of the global minimum-variance portfolio," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 59-80, March.
    18. Díaz-García, José A. & Gutiérrez-Jáimez, Ramón, 2006. "The distribution of the residual from a general elliptical multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1829-1841, September.
    19. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    20. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:24:y:2007:i:04:n:s0217595907001401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.