IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v617y2023ics037843712300184x.html
   My bibliography  Save this article

Evolution of the periphery of a self-organized road network

Author

Listed:
  • Cirunay, Michelle T.
  • Batac, Rene C.

Abstract

Urban roads are geographical planar networks, making their growth patterns constrained over the available physical space. In this work, we quantify the center (core)-periphery structure of an urban road system based on the betweenness centrality of the nodes, and then measure their spread over the evolution of the urban zone. Using corrected and georeferenced historical maps of Manila, Philippines, we observe temporal invariance of the betweenness centrality distributions, along with the preponderance of comparable-betweenness node connections, both of which signify the preservation of the planarity of the network. Despite the geographical expansion of the road network, we observe topologically peripheral nodes in the geographical center for all the map periods considered, signifying the presence and growth of dendritic dead-ends which may ultimately affect the traffic flow. The shortest paths among the topological periphery shows an evolution towards a homogenized, grid-like structure for the entire network. Understanding peripheral connections, not only for planar networks but also for other complex networked entities, may hint at the efficiency of transport within the system, as these peripheral nodes represent the least “important” sites in the network.

Suggested Citation

  • Cirunay, Michelle T. & Batac, Rene C., 2023. "Evolution of the periphery of a self-organized road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
  • Handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s037843712300184x
    DOI: 10.1016/j.physa.2023.128629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712300184X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.128629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Boeing, 2020. "A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood," Environment and Planning B, , vol. 47(4), pages 590-608, May.
    2. Michelle T. Cirunay & Rene C. Batac, 2018. "Statistical signatures of the spatial imprints of road network growth," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(10), pages 1-16, October.
    3. Alec Kirkley & Hugo Barbosa & Marc Barthelemy & Gourab Ghoshal, 2018. "From the betweenness centrality in street networks to structural invariants in random planar graphs," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    5. Petter Holme, 2003. "Congestion And Centrality In Traffic Flow On Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 163-176.
    6. Shaobin Huang & Tianyang Lv & Xizhe Zhang & Yange Yang & Weimin Zheng & Chao Wen, 2014. "Identifying Node Role in Social Network Based on Multiple Indicators," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-16, August.
    7. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    8. Pradhan, Rudra P., 2019. "Investigating the causal relationship between transportation infrastructure, financial penetration and economic growth in G-20 countries," Research in Transportation Economics, Elsevier, vol. 78(C).
    9. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    10. Jesus Felix Valenzuela & Erika Fille Legara & Xiuju Fu & Rick Siow Mong Goh & Robert De Souza & Christopher Monterola, 2014. "A network perspective on the calamity, induced inaccessibility of communities and the robustness of centralized, landbound relief efforts," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 25(06), pages 1-16.
    11. Lämmer, Stefan & Gehlsen, Björn & Helbing, Dirk, 2006. "Scaling laws in the spatial structure of urban road networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 89-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Minjin & Cheon, SangHyun & Son, Seung-Woo & Lee, Mi Jin & Lee, Sungmin, 2023. "Exploring the relationship between the spatial distribution of roads and universal pattern of travel-route efficiency in urban road networks," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    2. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    3. Sergio Porta & Vito Latora & Fahui Wang & Salvador Rueda & Emanuele Strano & Salvatore Scellato & Alessio Cardillo & Eugenio Belli & Francisco CÃ rdenas & Berta Cormenzana & Laura Latora, 2012. "Street Centrality and the Location of Economic Activities in Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 49(7), pages 1471-1488, May.
    4. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    5. Moreno Bonaventura & Luca Maria Aiello & Daniele Quercia & Vito Latora, 2021. "Predicting urban innovation from the US Workforce Mobility Network," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    6. Tsiotas, Dimitrios, 2021. "Drawing indicators of economic performance from network topology: The case of the interregional road transportation in Greece," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Wang, Shiguang & Zheng, Lili & Yu, Dexin, 2017. "The improved degree of urban road traffic network: A case study of Xiamen, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 256-264.
    8. Marc Barthelemy, 2017. "From paths to blocks: New measures for street patterns," Environment and Planning B, , vol. 44(2), pages 256-271, March.
    9. Perez, Yuri & Pereira, Fabio Henrique, 2021. "Simulation of traffic light disruptions in street networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    10. Mirco Nanni & Leandro Tortosa & José F Vicent & Gevorg Yeghikyan, 2020. "Ranking places in attributed temporal urban mobility networks," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    11. Merchán, Daniel & Winkenbach, Matthias & Snoeck, André, 2020. "Quantifying the impact of urban road networks on the efficiency of local trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 38-62.
    12. Benita, Francisco & Piliouras, Georgios, 2020. "Location, location, usage: How different notions of centrality can predict land usage in Singapore," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Lee, Byoung-Hwa & Jung, Woo-Sung, 2018. "Analysis on the urban street network of Korea: Connections between topology and meta-information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 15-25.
    14. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    15. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    17. Wang, Shiguang & Yu, Dexin & Lin, Ciyun & Shang, Qiang & Lin, Yu, 2018. "How to connect with each other between roads? An empirical study of urban road connection properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 775-787.
    18. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    19. Jiayu Qin & Gang Mei & Lei Xiao, 2020. "Building the Traffic Flow Network with Taxi GPS Trajectories and Its Application to Identify Urban Congestion Areas for Traffic Planning," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    20. Bono, Flavio & Gutiérrez, Eugenio & Poljansek, Karmen, 2010. "Road traffic: A case study of flow and path-dependency in weighted directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5287-5297.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:617:y:2023:i:c:s037843712300184x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.