IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v7y2004i4pno-nob.html
   My bibliography  Save this article

Lean product development flow

Author

Listed:
  • Bohdan W. Oppenheim

Abstract

A general holistic framework, also called a process—named “Lean Product Development Flow (LPDF)”—for organizing the engineering work of Product Development (PD), has been proposed as a contribution to the emerging field of Lean Systems Engineering. The framework is based on Lean Principles, with emphasis on PD value‐pulling workflow pulsed by takt periods. The value is defined as (1) mission assurance/product quality, (the traditional goals of Systems Engineering) and (2) reduced program cost and schedule achieved by a radical reduction of waste. LPDF is recommended for smaller design programs based on a high degree of legacy knowledge, with technologies mature enough so that the program feasibility is not in question. LPDF may involve limited‐scope research, provided that it can be identified early in the program, and carried out separate from the main workflow. The paper is focused on aerospace and defense programs, which are presently burdened with as much as 60–90% of waste, but the process is also applicable to commercial programs. LPDF can be applied to the entire PD, to one or more milestones, and to a multilevel program. LPDF requires both detailed preparations and disciplined execution. The preparations include detailed Value Stream Mapping, separation of research from the main workflow, parsing of the Value Stream map into Takt Periods, architecting the LPDF team using dynamic allocation of resources, and team training. LPDF execution is organized as a flow through a series of short and equal work Takt Periods, each followed by an Integrative Event for structured, comprehensive coordination. Strategic and flexible tactical mitigations of uncertainties must be applied during the flow. LPDF also requires excellent leadership of a Chief Engineer, modeled after Toyota and Honda, who is a dedicated program “owner,” an expert systems designer, a strong leader focused on the program and product integrity, and skilled in consensus‐building. The Chief Engineer is responsible for the entire program, with Assistant Chiefs assisting in selected technical areas, and a Project Manager assisting with program administration. An industrial pilot program is currently being undertaken to validate the method. © 2004 Wiley Periodicals, Inc. Syst Eng 7: 352–376, 2004

Suggested Citation

  • Bohdan W. Oppenheim, 2004. "Lean product development flow," Systems Engineering, John Wiley & Sons, vol. 7(4), pages 1-1.
  • Handle: RePEc:wly:syseng:v:7:y:2004:i:4:p:no-no:b
    DOI: 10.1002/sys.20014
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20014
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William B. Rouse & Kenneth R. Boff, 2003. "Value streams in science & technology: A case study of value creation and intelligent tutoring systems," Systems Engineering, John Wiley & Sons, vol. 6(2), pages 76-91.
    2. David M. Sharman & Ali A. Yassine, 2004. "Characterizing complex product architectures," Systems Engineering, John Wiley & Sons, vol. 7(1), pages 35-60.
    3. Insub Shin & Alexander H. Levis, 2003. "Performance prediction of networked information systems via Petri nets and queuing nets," Systems Engineering, John Wiley & Sons, vol. 6(1), pages 1-18.
    4. Albert Y. Ha & Evan L. Porteus, 1995. "Optimal Timing of Reviews in Concurrent Design for Manufacturability," Management Science, INFORMS, vol. 41(9), pages 1431-1447, September.
    5. Armin P. Schulz & Don P. Clausing & Ernst Fricke & Herbert Negele, 2000. "Development and integration of winning technologies as key to competitive advantage," Systems Engineering, John Wiley & Sons, vol. 3(4), pages 180-211.
    6. Tyson R. Browning, 1999. "Designing system development projects for organizational integration," Systems Engineering, John Wiley & Sons, vol. 2(4), pages 217-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohdan W. Oppenheim & Earll M. Murman & Deborah A. Secor, 2011. "Lean Enablers for Systems Engineering," Systems Engineering, John Wiley & Sons, vol. 14(1), pages 29-55, March.
    2. Rachman, Andika & Ratnayake, R.M. Chandima, 2019. "Machine learning approach for risk-based inspection screening assessment," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 518-532.
    3. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    4. A. M. M. Sharif Ullah & Jun'ichi Tamaki, 2011. "Analysis of Kano‐model‐based customer needs for product development," Systems Engineering, John Wiley & Sons, vol. 14(2), pages 154-172, June.
    5. Francis Vanek & Peter Jackson & Richard Grzybowski, 2008. "Systems engineering metrics and applications in product development: A critical literature review and agenda for further research," Systems Engineering, John Wiley & Sons, vol. 11(2), pages 107-124, June.
    6. Romulo B. Magnaye & Brian J. Sauser & Jose E. Ramirez‐Marquez, 2010. "System development planning using readiness levels in a cost of development minimization model," Systems Engineering, John Wiley & Sons, vol. 13(4), pages 311-323, December.
    7. Tyagi, Satish & Cai, Xianming & Yang, Kai & Chambers, Terrence, 2015. "Lean tools and methods to support efficient knowledge creation," International Journal of Information Management, Elsevier, vol. 35(2), pages 204-214.
    8. Ghadir I. Siyam & David C. Wynn & P. John Clarkson, 2015. "Review of Value and Lean in Complex Product Development," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 192-207, March.
    9. Aleksander Buczacki & Piotr Piątek, 2021. "Proposal for an Integrated Framework for Electronic Control Unit Design in the Automotive Industry," Energies, MDPI, vol. 14(13), pages 1-26, June.
    10. Ieva Meidute-Kavaliauskiene & Halil Ibrahim Cebeci & Shahryar Ghorbani & Renata Činčikaitė, 2021. "An Integrated Approach for Evaluating Lean Innovation Practices in the Pharmaceutical Supply Chain," Logistics, MDPI, vol. 5(4), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shawn T. Collins & Ali A. Yassine & Stephen P. Borgatti, 2009. "Evaluating product development systems using network analysis," Systems Engineering, John Wiley & Sons, vol. 12(1), pages 55-68, March.
    2. Ali A. Yassine & Luke A. Wissmann, 2007. "The Implications of Product Architecture on the Firm," Systems Engineering, John Wiley & Sons, vol. 10(2), pages 118-137, June.
    3. Rudolf Smaling & Olivier de Weck, 2007. "Assessing risks and opportunities of technology infusion in system design," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 1-25, March.
    4. Christian Terwiesch & Christoph H. Loch, 1999. "Measuring the Effectiveness of Overlapping Development Activities," Management Science, INFORMS, vol. 45(4), pages 455-465, April.
    5. Biren (Brian) Prasad, 2002. "Building blocks for a decision‐based integrated product development and system realization process," Systems Engineering, John Wiley & Sons, vol. 5(2), pages 123-144.
    6. Christian Terwiesch & Yi Xu, 2008. "Innovation Contests, Open Innovation, and Multiagent Problem Solving," Management Science, INFORMS, vol. 54(9), pages 1529-1543, September.
    7. Meir Tahan & Joseph Z. Ben‐Asher, 2005. "Modeling and analysis of integration processes for engineering systems," Systems Engineering, John Wiley & Sons, vol. 8(1), pages 62-77.
    8. Aditya U. Kulkarni & Alejandro Salado & Peng Xu & Christian Wernz, 2021. "An evaluation of the optimality of frequent verification for vertically integrated systems," Systems Engineering, John Wiley & Sons, vol. 24(1), pages 17-33, January.
    9. Stefan Thomke & David E. Bell, 2001. "Sequential Testing in Product Development," Management Science, INFORMS, vol. 47(2), pages 308-323, February.
    10. Atif Açıkgöz & Irem Demirkan & Gary P. Latham & Cemil Kuzey, 2021. "The Relationship Between Unlearning and Innovation Ambidexterity with the Performance of New Product Development Teams," Group Decision and Negotiation, Springer, vol. 30(4), pages 945-982, August.
    11. Joglekar, Nitindra R., 2003. "Performance of coupled product development activities with a deadline," Working papers WP 4122-00., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Gülru F. Özkan-Seely & Cheryl Gaimon & Stylianos Kavadias, 2015. "Dynamic Knowledge Transfer and Knowledge Development for Product and Process Design Teams," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 177-190, May.
    13. Ipek Kazancoglu & Yigit Kazancoglu & Emel Yarimoglu & Aysun Kahraman, 2020. "A conceptual framework for barriers of circular supply chains for sustainability in the textile industry," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1477-1492, September.
    14. Oliver Baumann, 2015. "Distributed Problem Solving in Modular Systems: the Benefit of Temporary Coordination Neglect," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 124-136, January.
    15. Nitindra R. Joglekar & Ali A. Yassine & Steven D. Eppinger & Daniel E. Whitney, 2001. "Performance of Coupled Product Development Activities with a Deadline," Management Science, INFORMS, vol. 47(12), pages 1605-1620, December.
    16. Jeremy Hutchison-Krupat, 2018. "Communication, Incentives, and the Execution of a Strategic Initiative," Management Science, INFORMS, vol. 64(7), pages 3380-3399, July.
    17. Chakravarty, Amiya K., 2001. "Overlapping design and build cycles in product development," European Journal of Operational Research, Elsevier, vol. 134(2), pages 392-424, October.
    18. Sosa, Manuel E., 2003. "Factors that influence technical communication in distributed product development : an empirical study in the telecommunications industry," Working papers WP 4123-00., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. Thomas A. Roemer & Reza Ahmadi, 2004. "Concurrent Crashing and Overlapping in Product Development," Operations Research, INFORMS, vol. 52(4), pages 606-622, August.
    20. Qian, Yanjun & Xie, Min & Goh, Thong Ngee & Lin, Jun, 2010. "Optimal testing strategies in overlapped design process," European Journal of Operational Research, Elsevier, vol. 206(1), pages 131-143, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:7:y:2004:i:4:p:no-no:b. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.