IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v7y2004i3p195-216.html
   My bibliography  Save this article

Incorporating psychological influences in probabilistic cost analysis

Author

Listed:
  • Edouard Kujawski
  • Mariana L. Alvaro
  • William R. Edwards

Abstract

Today's typical probabilistic cost analysis assumes an “ideal” project that is devoid of the human and organizational considerations that heavily influence the success and cost of real‐world projects. In the real world “Money Allocated Is Money Spent” (MAIMS principle); cost underruns are rarely available to protect against cost overruns while task overruns are passed on to the total project cost. Realistic cost estimates therefore require a modified probabilistic cost analysis that simultaneously models the cost management strategy including budget allocation. Psychological influences such as overconfidence in assessing uncertainties, dependencies among cost elements, and risk are other important considerations that are generally not addressed. It should then be no surprise that actual project costs often exceed the initial estimates and are delivered late and/or with a reduced scope. This paper presents a practical probabilistic cost analysis model that incorporates recent findings in human behavior and judgment under uncertainty, dependencies among cost elements, the MAIMS principle, and project management practices. Uncertain cost elements are elicited from experts using the direct fractile assessment method and fitted with three‐parameter Weibull distributions. The full correlation matrix is specified in terms of two parameters that characterize correlations among cost elements in the same and in different subsystems. The analysis is readily implemented using standard Monte Carlo simulation tools such as @Risk and Crystal Ball®. The analysis of a representative design and engineering project substantiates that today's typical probabilistic cost analysis is likely to severely underestimate project cost for probability of success values of importance to contractors and procuring activities. The proposed approach provides a framework for developing a viable cost management strategy for allocating baseline budgets and contingencies. Given the scope and magnitude of the cost‐overrun problem, the benefits are likely to be significant. © 2004 Wiley Periodicals, Inc. Syst Eng 7: 000–000, 2004

Suggested Citation

  • Edouard Kujawski & Mariana L. Alvaro & William R. Edwards, 2004. "Incorporating psychological influences in probabilistic cost analysis," Systems Engineering, John Wiley & Sons, vol. 7(3), pages 195-216.
  • Handle: RePEc:wly:syseng:v:7:y:2004:i:3:p:195-216
    DOI: 10.1002/sys.20004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20004
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew Rabin, 1998. "Psychology and Economics," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 11-46, March.
    2. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    3. Robin L. Dillon & Richard John & Detlof von Winterfeldt, 2002. "Assessment of Cost Uncertainties for Large Technology Projects: A Methodology and an Application," Interfaces, INFORMS, vol. 32(4), pages 52-66, August.
    4. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    5. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edouard Kujawski & Gregory A. Miller, 2007. "Quantitative risk‐based analysis for military counterterrorism systems," Systems Engineering, John Wiley & Sons, vol. 10(4), pages 273-289, December.
    2. Edouard Kujawski, 2015. "Accounting for Terrorist Behavior in Allocating Defensive Counterterrorism Resources," Systems Engineering, John Wiley & Sons, vol. 18(4), pages 365-376, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James K. Hammitt & Yifan Zhang, 2013. "Combining Experts’ Judgments: Comparison of Algorithmic Methods Using Synthetic Data," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 109-120, January.
    2. Jesus Palomo & David Rios Insua & Fabrizio Ruggeri, 2007. "Modeling External Risks in Project Management," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 961-978, August.
    3. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    4. Donald L. Keefer & Craig W. Kirkwood & James L. Corner, 2004. "Perspective on Decision Analysis Applications, 1990–2001," Decision Analysis, INFORMS, vol. 1(1), pages 4-22, March.
    5. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    6. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Jason R. W. Merrick, 2008. "Getting the Right Mix of Experts," Decision Analysis, INFORMS, vol. 5(1), pages 43-52, March.
    8. Ali E. Abbas & David V. Budescu & Yuhong (Rola) Gu, 2010. "Assessing Joint Distributions with Isoprobability Contours," Management Science, INFORMS, vol. 56(6), pages 997-1011, June.
    9. Tianyang Wang & James S. Dyer, 2012. "A Copulas-Based Approach to Modeling Dependence in Decision Trees," Operations Research, INFORMS, vol. 60(1), pages 225-242, February.
    10. Gilberto Montibeller & Detlof von Winterfeldt, 2015. "Cognitive and Motivational Biases in Decision and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1230-1251, July.
    11. J. Eric Bickel & James E. Smith, 2006. "Optimal Sequential Exploration: A Binary Learning Model," Decision Analysis, INFORMS, vol. 3(1), pages 16-32, March.
    12. Robin L. Dillon & Richard John & Detlof von Winterfeldt, 2002. "Assessment of Cost Uncertainties for Large Technology Projects: A Methodology and an Application," Interfaces, INFORMS, vol. 32(4), pages 52-66, August.
    13. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    14. Huifen Chen, 2001. "Initialization for NORTA: Generation of Random Vectors with Specified Marginals and Correlations," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 312-331, November.
    15. Tianyang Wang & James S. Dyer & John C. Butler, 2016. "Modeling Correlated Discrete Uncertainties in Event Trees with Copulas," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 396-410, February.
    16. Morales, O. & Kurowicka, D. & Roelen, A., 2008. "Eliciting conditional and unconditional rank correlations from conditional probabilities," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 699-710.
    17. Jing Ai & Patrick L. Brockett & Tianyang Wang, 2017. "Optimal Enterprise Risk Management and Decision Making With Shared and Dependent Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(4), pages 1127-1169, December.
    18. Chollete, Lorán & de la Peña, Victor & Klass, Michael, 2023. "The price of independence in a model with unknown dependence," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 51-58.
    19. Luis V. Montiel & J. Eric Bickel, 2013. "Generating a Random Collection of Discrete Joint Probability Distributions Subject to Partial Information," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 951-967, December.
    20. Jason R. W. Merrick & J. Rene van Dorp & Amita Singh, 2005. "Analysis of Correlated Expert Judgments from Extended Pairwise Comparisons," Decision Analysis, INFORMS, vol. 2(1), pages 17-29, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:7:y:2004:i:3:p:195-216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.