IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v32y2024i1p455-480.html
   My bibliography  Save this article

Towards low‐carbon sustainable development under Industry 4.0: The influence of industrial intelligence on China's carbon mitigation

Author

Listed:
  • Hui Tian
  • Jiaqi Qin
  • Chaoyin Cheng
  • Sohail Ahmad Javeed
  • Tiansi Chu

Abstract

Global climate change is becoming an increasingly serious issue. China, the largest carbon emitter, has a long way towards its sustainable development goals (SDGs) and take on its carbon reduction responsibility, especially in the industrial sector. In this vein, industrial intelligence, a key driver in the “Industry 4.0 era”, offers an opportunity in this carbon reduction campaign. This paper seeks to examine the influences of industrial intelligence on carbon emissions, their heterogeneous characteristics and transmission mechanisms, and the moderating role of human capital. Therefore, we properly probed theoretical aspects, and then we used China's provincial data from 2006 to 2019 and a number of tests, namely the fixed effect model, the two‐stage test, and the moderating effect model, to test the relevant assumptions. We first unfolded that industrial intelligence can significantly mitigate carbon emissions. Specifically, the heterogeneous analysis found that carbon reduction efforts are more pronounced in China's central and western regions and resource‐based regions. We further highlight the mechanism identification, which reveals that industrial structure upgrading and technological innovation are the main channels for industrial intelligence to abate CO2 emissions. Importantly, we pinpoint the role of human capital, which positively moderates the relationship between industrial intelligence and carbon emissions and can well amplify the industrial structure effect of industrial intelligence. These results are conducive to accurately assessing the environmental benefits of industrial intelligence and providing policy enlightenment for China to alleviate carbon emissions, and they will also offer a reference for other developing countries to learn from.

Suggested Citation

  • Hui Tian & Jiaqi Qin & Chaoyin Cheng & Sohail Ahmad Javeed & Tiansi Chu, 2024. "Towards low‐carbon sustainable development under Industry 4.0: The influence of industrial intelligence on China's carbon mitigation," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 455-480, February.
  • Handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:455-480
    DOI: 10.1002/sd.2664
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2664
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2664?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fritsch, Michael & Wyrwich, Michael, 2021. "Is innovation (increasingly) concentrated in large cities? An international comparison," Research Policy, Elsevier, vol. 50(6).
    2. Zeeshan Ullah & Ahmad Arslan, 2022. "R&D contribution to sustainable product attributes development: The complementarity of human capital," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 902-915, October.
    3. Nishant, Rohit & Kennedy, Mike & Corbett, Jacqueline, 2020. "Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda," International Journal of Information Management, Elsevier, vol. 53(C).
    4. Yao, Yao & Ivanovski, Kris & Inekwe, John & Smyth, Russell, 2019. "Human capital and energy consumption: Evidence from OECD countries," Energy Economics, Elsevier, vol. 84(C).
    5. Liu, Jun & Liu, Liang & Qian, Yu & Song, Shunfeng, 2022. "The effect of artificial intelligence on carbon intensity: Evidence from China's industrial sector," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    6. Daron Acemoglu & Pascual Restrepo, 2019. "Automation and New Tasks: How Technology Displaces and Reinstates Labor," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 3-30, Spring.
    7. Lan, Jing & Munro, Alistair, 2013. "Environmental compliance and human capital: Evidence from Chinese industrial firms," Resource and Energy Economics, Elsevier, vol. 35(4), pages 534-557.
    8. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    9. Ma, Junhai & Hou, Yaming & Wang, Zongxian & Yang, Wenhui, 2021. "Pricing strategy and coordination of automobile manufacturers based on government intervention and carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    10. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    11. Haibo Sun & Zhonglu Liu & Yingchao Chen, 2020. "Foreign direct investment and manufacturing pollution emissions: A perspective from heterogeneous environmental regulation," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1376-1387, September.
    12. Stephen Bond & Anke Hoeffler, 2001. "GMM Estimation of Empirical Growth Models," Economics Series Working Papers 2001-W21, University of Oxford, Department of Economics.
    13. Wang, Rong & Tan, Junlan & Yao, Shuangliang, 2021. "Are natural resources a blessing or a curse for economic development? The importance of energy innovations," Resources Policy, Elsevier, vol. 72(C).
    14. Muhammad Khan, 2020. "CO2 emissions and sustainable economic development: New evidence on the role of human capital," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1279-1288, September.
    15. Badeeb, Ramez Abubakr & Lean, Hooi Hooi & Clark, Jeremy, 2017. "The evolution of the natural resource curse thesis: A critical literature survey," Resources Policy, Elsevier, vol. 51(C), pages 123-134.
    16. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    17. Lara Waltersmann & Steffen Kiemel & Julian Stuhlsatz & Alexander Sauer & Robert Miehe, 2021. "Artificial Intelligence Applications for Increasing Resource Efficiency in Manufacturing Companies—A Comprehensive Review," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    18. Yaping He & Pengfei Sheng & Marek Vochozka, 2017. "Pollution caused by finance and the relative policy analysis in China," Energy & Environment, , vol. 28(7), pages 808-823, November.
    19. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    20. Licong Xing & Edmund Ntom Udemba & Merve Tosun & Ibrahim Abdallah & Imed Boukhris, 2023. "Sustainable development policies of renewable energy and technological innovation toward climate and sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1178-1192, April.
    21. Yongming Huang & Lian Xue & Zeeshan Khan, 2021. "What abates carbon emissions in China: Examining the impact of renewable energy and green investment," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 823-834, September.
    22. Cheng, Zhonghua & Li, Xiang & Wang, Meixiao, 2021. "Resource curse and green economic growth," Resources Policy, Elsevier, vol. 74(C).
    23. Stephen Taiwo Onifade & Andrew Adewale Alola, 2022. "Energy transition and environmental quality prospects in leading emerging economies: The role of environmental‐related technological innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1766-1778, December.
    24. Ting Zheng & Marco Ardolino & Andrea Bacchetti & Marco Perona, 2021. "The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1922-1954, March.
    25. Seyfettin Erdoğan & Nigar Demircan Çakar & Recep Ulucak & Danish & Yacouba Kassouri, 2021. "The role of natural resources abundance and dependence in achieving environmental sustainability: Evidence from resource‐based economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 143-154, January.
    26. Veli Yilanci & Recep Ulucak & Yaoqi Zhang & Valeria Andreoni, 2023. "The role of affluence, urbanization, and human capital for sustainable forest management in China: Robust findings from a new method of Fourier cointegration," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 812-824, April.
    27. Gary S. Becker & Robert J. Barro, 1988. "A Reformulation of the Economic Theory of Fertility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 103(1), pages 1-25.
    28. Yaya Li & Yuru Zhang & An Pan & Minchun Han & Eleonora Veglianti, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Post-Print hal-04522085, HAL.
    29. Fakhri J. Hasanov & Zeeshan Khan & Muzzammil Hussain & Muhammad Tufail, 2021. "Theoretical Framework for the Carbon Emissions Effects of Technological Progress and Renewable Energy Consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 810-822, September.
    30. Katarína Stachová & Ján Papula & Zdenko Stacho & Lucia Kohnová, 2019. "External Partnerships in Employee Education and Development as the Key to Facing Industry 4.0 Challenges," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    31. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    32. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
    33. Wei, Taoyuan & Liu, Yang, 2017. "Estimation of global rebound effect caused by energy efficiency improvement," Energy Economics, Elsevier, vol. 66(C), pages 27-34.
    34. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    35. Recep Ulucak & Danish & Salah Ud‐Din Khan, 2020. "Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 857-867, July.
    36. Zhang, Yue-Jun, 2011. "The impact of financial development on carbon emissions: An empirical analysis in China," Energy Policy, Elsevier, vol. 39(4), pages 2197-2203, April.
    37. Daron Acemoglu, 1996. "A Microfoundation for Social Increasing Returns in Human Capital Accumulation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(3), pages 779-804.
    38. Timothy F. Bresnahan & Erik Brynjolfsson & Lorin M. Hitt, 2002. "Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 339-376.
    39. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    40. Zheng, Ting & Ardolino, Marco & Bacchetti, Andrea & Perona, Marco, 2021. "The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 129469, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    41. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    42. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    43. Huang, Geng & He, Ling-Yun & Lin, Xi, 2022. "Robot adoption and energy performance: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 107(C).
    44. Javier Cravino & Andrei Levchenko & Marco Rojas, 2022. "Population Aging and Structural Transformation," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(4), pages 479-498, October.
    45. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    46. Xie, Rong-hui & Yuan, Yi-jun & Huang, Jing-jing, 2017. "Different Types of Environmental Regulations and Heterogeneous Influence on “Green” Productivity: Evidence from China," Ecological Economics, Elsevier, vol. 132(C), pages 104-112.
    47. Erik Brynjolfsson & Tom Mitchell & Daniel Rock, 2018. "What Can Machines Learn, and What Does It Mean for Occupations and the Economy?," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 43-47, May.
    48. Teixeira, Aurora A.C. & Queirós, Anabela S.S., 2016. "Economic growth, human capital and structural change: A dynamic panel data analysis," Research Policy, Elsevier, vol. 45(8), pages 1636-1648.
    49. Chang, Lei & Shi, Fanglan & Taghizadeh-Hesary, Farhad & Saydaliev, Hayot Berk, 2023. "Information and communication technologies development and the resource curse," Resources Policy, Elsevier, vol. 80(C).
    50. Xiang, Yitian & Cui, Haotian & Bi, Yunxiao, 2023. "The impact and channel effects of banking competition and government intervention on carbon emissions: Evidence from China," Energy Policy, Elsevier, vol. 175(C).
    51. Ahmet Koseoglu & Ali Gokhan Yucel & Recep Ulucak, 2022. "Green innovation and ecological footprint relationship for a sustainable development: Evidence from top 20 green innovator countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 976-988, October.
    52. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    53. Jahanger, Atif & Usman, Muhammad & Murshed, Muntasir & Mahmood, Haider & Balsalobre-Lorente, Daniel, 2022. "The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations," Resources Policy, Elsevier, vol. 76(C).
    54. Xiaoli Hao & Xinhui Wang & Haitao Wu & Yu Hao, 2023. "Path to sustainable development: Does digital economy matter in manufacturing green total factor productivity?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 360-378, February.
    55. Usman, Ahmed & Ozturk, Ilhan & Ullah, Sana & Hassan, Ali, 2021. "Does ICT have symmetric or asymmetric effects on CO2 emissions? Evidence from selected Asian economies," Technology in Society, Elsevier, vol. 67(C).
    56. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    57. Lee, Chien-Chiang & Wang, Chih-Wei & Ho, Shan-Ju & Wu, Ting-Pin, 2021. "The impact of natural disaster on energy consumption: International evidence," Energy Economics, Elsevier, vol. 97(C).
    58. Fang, Zheng & Chen, Yang, 2017. "Human capital and energy in economic growth – Evidence from Chinese provincial data," Energy Economics, Elsevier, vol. 68(C), pages 340-358.
    59. Hui Zhao & Yaru Yang & Ning Li & Desheng Liu & Hui Li, 2021. "How Does Digital Finance Affect Carbon Emissions? Evidence from an Emerging Market," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    60. Violeta Sima & Ileana Georgiana Gheorghe & Jonel Subić & Dumitru Nancu, 2020. "Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    61. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    2. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    3. Lee, Chien-Chiang & Xuan, Chengnan & Wang, Fuhao, 2024. "Natural resources and green economic growth: The role of artificial intelligence," Resources Policy, Elsevier, vol. 98(C).
    4. Borsato, Andrea & Lorentz, André, 2023. "The Kaldor–Verdoorn law at the age of robots and AI," Research Policy, Elsevier, vol. 52(10).
    5. Fu, Tong & Qiu, Zhaoxuan & Yang, Xiangyang & Li, Zijun, 2024. "The impact of artificial intelligence on green technology cycles in China," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    6. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    7. Lee, Chien-Chiang & Yan, Jingyang, 2024. "Will artificial intelligence make energy cleaner? Evidence of nonlinearity," Applied Energy, Elsevier, vol. 363(C).
    8. Gan, Jiawu & Liu, Lihua & Qiao, Gang & Zhang, Qin, 2023. "The role of robot adoption in green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    9. Schneider, Florian, 2024. "Do robots boost productivity? A quantitative meta-study," MPRA Paper 123392, University Library of Munich, Germany.
    10. Peng Liang & Xinhui Sun & Luzhuang Qi, 2024. "Does artificial intelligence technology enhance green transformation of enterprises: based on green innovation perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 21651-21687, August.
    11. Dosi, G. & Piva, M. & Virgillito, M.E. & Vivarelli, M., 2021. "Embodied and disembodied technological change: The sectoral patterns of job-creation and job-destruction," Research Policy, Elsevier, vol. 50(4).
    12. Cui, Huijie & Liang, Shangkun & Xu, Canyu & Junli, Yu, 2024. "Robots and analyst forecast precision: Evidence from Chinese manufacturing," International Review of Financial Analysis, Elsevier, vol. 94(C).
    13. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    14. Hang, Leiming & Lu, Wei & Ge, Xiaowei & Ye, Bin & Zhao, Zhiqi & Cheng, Fangfang, 2024. "R&D innovation, industrial evolution and the labor skill structure in China manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    15. Qian, Cheng & Zhu, Chun & Huang, Duen-Huang & Zhang, Shangfeng, 2023. "Examining the influence mechanism of artificial intelligence development on labor income share through numerical simulations," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    16. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    17. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    18. Harry Moroz & Mariana Viollaz, 2024. "The Future of Work in Central America and the Dominican Republic," World Bank Publications - Reports 42043, The World Bank Group.
    19. Jasmine Mondolo, 2022. "The composite link between technological change and employment: A survey of the literature," Journal of Economic Surveys, Wiley Blackwell, vol. 36(4), pages 1027-1068, September.
    20. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:455-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.