IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v30y2022i6p1682-1702.html
   My bibliography  Save this article

Unfolding research themes for industrial symbiosis and underlying theories

Author

Listed:
  • Fabiana Liar Agudo
  • Barbara Stolte Bezerra
  • José Alcides Gobbo
  • Luis Alberto Bertolucci Paes

Abstract

This paper aims to analyze the research themes that are addressed in studies on industrial symbiosis (IS), from the perspective of theories. The paper method is a longitudinal analysis of retrospective nature from 1998 to 2021. This approach allowed to detects the main drivers and associated themes that structured researches on IS in the period. In general, Industrial Ecology Theory, Network Theory, Systems Theory and Organizational Theory were present in a considerable part of research themes on IS. It was observed that the IS research themes moved over the period analyzed to nine areas of study: (1) Waste as a resource, (2) development industrial symbiosis network, (3) circular economy and industrial symbiosis, (4) industrial co‐localization, (5) energy innovations, (6) closed loop chains, (7) IS's social aspects, (8) regional‐level metabolism, and (9) waste knowledge. In summary, the contributions of this paper are the thematic proposition of IS from the perspective of theories, pointing out the key‐aspects; and presentation of a research themes' diagram towards the IS buildup.

Suggested Citation

  • Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
  • Handle: RePEc:wly:sustdv:v:30:y:2022:i:6:p:1682-1702
    DOI: 10.1002/sd.2335
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2335
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Figge, Frank & Thorpe, Andrea Stevenson & Good, Jason, 2021. "Us before me: A group level approach to the circular economy," Ecological Economics, Elsevier, vol. 179(C).
    2. Suzanna ElMassah, 2018. "Industrial symbiosis within eco‐industrial parks: Sustainable development for Borg El‐Arab in Egypt," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 884-892, November.
    3. Jensen, Michael C. & Meckling, William H., 1976. "Theory of the firm: Managerial behavior, agency costs and ownership structure," Journal of Financial Economics, Elsevier, vol. 3(4), pages 305-360, October.
    4. Jayakrishna Kandasamy & Yatin P. Kinare & Miheer T. Pawar & Abhijit Majumdar & Vimal K.E.K. & Rohit Agrawal, 2022. "Circular economy adoption challenges in medical waste management for sustainable development: An empirical study," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 958-975, October.
    5. Ralf Isenmann, 2003. "Industrial ecology: shedding more light on its perspective of understanding nature as model," Sustainable Development, John Wiley & Sons, Ltd., vol. 11(3), pages 143-158.
    6. Stephen P. Osborne, 2006. "The New Public Governance?-super-1," Public Management Review, Taylor & Francis Journals, vol. 8(3), pages 377-387, September.
    7. Mark Anthony Camilleri, 2019. "The circular economy's closed loop and product service systems for sustainable development: A review and appraisal," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(3), pages 530-536, May.
    8. Raymond L. Paquin & Jennifer Howard‐Grenville, 2012. "The Evolution of Facilitated Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 83-93, February.
    9. López-Robles, J.R. & Otegi-Olaso, J.R. & Porto Gómez, I. & Cobo, M.J., 2019. "30 years of intelligence models in management and business: A bibliometric review," International Journal of Information Management, Elsevier, vol. 48(C), pages 22-38.
    10. Frank Boons & Wouter Spekkink & Wenting Jiao, 2014. "A Process Perspective on Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 341-355, May.
    11. Sun, Lu & Li, Hong & Dong, Liang & Fang, Kai & Ren, Jingzheng & Geng, Yong & Fujii, Minoru & Zhang, Wei & Zhang, Ning & Liu, Zhe, 2017. "Eco-benefits assessment on urban industrial symbiosis based on material flows analysis and emergy evaluation approach: A case of Liuzhou city, China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 78-88.
    12. Frank Boons & Marian Chertow & Jooyoung Park & Wouter Spekkink & Han Shi, 2017. "Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 938-952, August.
    13. Kaifang Zheng & Suling Jia, 2017. "Promoting the Opportunity Identification of Industrial Symbiosis: Agent-Based Modeling Inspired by Innovation Diffusion Theory," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    14. Júlia Wahrlich & Flávio José Simioni, 2019. "Industrial symbiosis in the forestry sector: A case study in southern Brazil," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1470-1482, December.
    15. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    16. Manuel Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study," Post-Print hal-02127581, HAL.
    17. Marian Chertow & Weslynne Ashton & Juan Espinosa, 2008. "Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1299-1312.
    18. Yang Li & Lei Shi, 2015. "The Resilience of Interdependent Industrial Symbiosis Networks: A Case of Yixing Economic and Technological Development Zone," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 264-273, April.
    19. Manuel Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study [Dynamique de la symbiose industrielle, une stratégie pour réaliser une analyse complexe: l'étude de," Post-Print hal-02539477, HAL.
    20. Liu, Zhe & Adams, Michelle & Cote, Raymond P. & Geng, Yong & Chen, Qinghua & Liu, Weili & Sun, Lu & Yu, Xiaoman, 2017. "Comprehensive development of industrial symbiosis for the response of greenhouse gases emission mitigation: Challenges and opportunities in China," Energy Policy, Elsevier, vol. 102(C), pages 88-95.
    21. de Camargo Fiorini, Paula & Roman Pais Seles, Bruno Michel & Chiappetta Jabbour, Charbel Jose & Barberio Mariano, Enzo & de Sousa Jabbour, Ana Beatriz Lopes, 2018. "Management theory and big data literature: From a review to a research agenda," International Journal of Information Management, Elsevier, vol. 43(C), pages 112-129.
    22. Ramsey A. Wright & Raymond P. Côté & Jack Duffy & John Brazner, 2009. "Diversity and Connectance in an Industrial Context," Journal of Industrial Ecology, Yale University, vol. 13(4), pages 551-564, August.
    23. Anne-Lorène Vernay & Frank Boons, 2015. "Assessing Systems Integration: A Conceptual Framework and a Method," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 106-123, January.
    24. Tiberio Daddi & Domenico Ceglia & Guia Bianchi & Marcia Dutra de Barcellos, 2019. "Paradoxical tensions and corporate sustainability: A focus on circular economy business cases," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 770-780, July.
    25. Catherine Hardy & Thomas E. Graedel, 2002. "Industrial Ecosystems as Food Webs," Journal of Industrial Ecology, Yale University, vol. 6(1), pages 29-38, January.
    26. Junwen Zhu & Weishu Liu, 2020. "A tale of two databases: the use of Web of Science and Scopus in academic papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 321-335, April.
    27. Nikolay I. Didenko & Yuri S. Klochkov & Djamilia F. Skripnuk, 2018. "Ecological Criteria for Comparing Linear and Circular Economies," Resources, MDPI, vol. 7(3), pages 1-17, August.
    28. Hui Wang & Xuegong Xu & Gaoru Zhu, 2015. "Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-20, July.
    29. Manuel E. Morales & Arnaud Diemer, 2019. "Industrial Symbiosis Dynamics, a Strategy to Accomplish Complex Analysis: The Dunkirk Case Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    30. Kropotkin, Petr, 1902. "Mutual Aid: A Factor of Evolution," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, number kropotkin1902.
    31. Mariano, Enzo Barberio & Sobreiro, Vinicius Amorim & Rebelatto, Daisy Aparecida do Nascimento, 2015. "Human development and data envelopment analysis: A structured literature review," Omega, Elsevier, vol. 54(C), pages 33-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    2. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    4. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    5. J. Rincón-Moreno & M. Ormazábal & C. Jaca, 2022. "Stakeholder Perspectives in Transitioning to a Local Circular Economy: a Case Study in Spain," Circular Economy and Sustainability, Springer, vol. 2(2), pages 693-711, June.
    6. Mohammadtaghi Falsafi & Rosanna Fornasiero, 2022. "Explorative Multiple-Case Research on the Scrap-Based Steel Slag Value Chain: Opportunities for Circular Economy," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    7. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    8. Lovisa Harfeldt-Berg & Sarah Broberg & Karin Ericsson, 2022. "The Importance of Individual Actor Characteristics and Contextual Aspects for Promoting Industrial Symbiosis Networks," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    9. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    10. Luigi Fusco Girard & Francesca Nocca, 2019. "Moving Towards the Circular Economy/City Model: Which Tools for Operationalizing This Model?," Sustainability, MDPI, vol. 11(22), pages 1-48, November.
    11. Qiuchen Wang & Jannicke Baalsrud Hauge & Sebastiaan Meijer, 2019. "Adopting an Actor Analysis Framework to a Complex Technology Innovation Project: A Case Study of an Electric Road System," Sustainability, MDPI, vol. 12(1), pages 1-35, December.
    12. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    13. Nathaniel John Maynard & Vaishnav Raj Kanagaraj Subramanian & Chien-Yu Hua & Shih-Fang Lo, 2020. "Industrial Symbiosis in Taiwan: Case Study on Linhai Industrial Park," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    14. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    15. Antonio-José Moreno-Guerrero & María Elena Parra-González & Jesús López-Belmonte & Adrián Segura-Robles, 2022. "Science mapping analysis of “cultural” in web of science (1908–2019)," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 239-257, February.
    16. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    17. Jensen, Paul D., 2016. "The role of geospatial industrial diversity in the facilitation of regional industrial symbiosis," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 92-103.
    18. Gricelda Herrera-Franco & Néstor Montalván-Burbano & Carlos Mora-Frank & Lady Bravo-Montero, 2021. "Scientific Research in Ecuador: A Bibliometric Analysis," Publications, MDPI, vol. 9(4), pages 1-34, December.
    19. Winans, K. & Kendall, A. & Deng, H., 2017. "The history and current applications of the circular economy concept," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 825-833.
    20. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:30:y:2022:i:6:p:1682-1702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.