IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i7p1597-1614.html
   My bibliography  Save this article

Agent‐Based Recovery Model for Seismic Resilience Evaluation of Electrified Communities

Author

Listed:
  • Li Sun
  • Bozidar Stojadinovic
  • Giovanni Sansavini

Abstract

In this article, an agent‐based framework to quantify the seismic resilience of an electric power supply system (EPSS) and the community it serves is presented. Within the framework, the loss and restoration of the EPSS power generation and delivery capacity and of the power demand from the served community are used to assess the electric power deficit during the damage absorption and recovery processes. Damage to the components of the EPSS and of the community‐built environment is evaluated using the seismic fragility functions. The restoration of the community electric power demand is evaluated using the seismic recovery functions. However, the postearthquake EPSS recovery process is modeled using an agent‐based model with two agents, the EPSS Operator and the Community Administrator. The resilience of the EPSS–community system is quantified using direct, EPSS‐related, societal, and community‐related indicators. Parametric studies are carried out to quantify the influence of different seismic hazard scenarios, agent characteristics, and power dispatch strategies on the EPSS–community seismic resilience. The use of the agent‐based modeling framework enabled a rational formulation of the postearthquake recovery phase and highlighted the interaction between the EPSS and the community in the recovery process not quantified in resilience models developed to date. Furthermore, it shows that the resilience of different community sectors can be enhanced by different power dispatch strategies. The proposed agent‐based EPSS–community system resilience quantification framework can be used to develop better community and infrastructure system risk governance policies.

Suggested Citation

  • Li Sun & Bozidar Stojadinovic & Giovanni Sansavini, 2019. "Agent‐Based Recovery Model for Seismic Resilience Evaluation of Electrified Communities," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1597-1614, July.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:7:p:1597-1614
    DOI: 10.1111/risa.13277
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13277
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adachi, Takao & Ellingwood, Bruce R., 2008. "Serviceability of earthquake-damaged water systems: Effects of electrical power availability and power backup systems on system vulnerability," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 78-88.
    2. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    3. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    4. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    5. Enrico Zio & Giovanni Sansavini, 2011. "Component Criticality in Failure Cascade Processes of Network Systems," Risk Analysis, John Wiley & Sons, vol. 31(8), pages 1196-1210, August.
    6. Yu, Soonyoung & Kim, Sung-Wook & Oh, Chang-Whan & An, Hyunuk & Kim, Jin-Man, 2015. "Quantitative assessment of disaster resilience: An empirical study on the importance of post-disaster recovery costs," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 6-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanda Melendez & David Caballero-Russi & Mariantonieta Gutierrez Soto & Luis Felipe Giraldo, 2022. "Computational models of community resilience," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1121-1152, March.
    2. Sun, Li & D'Ayala, Dina & Fayjaloun, Rosemary & Gehl, Pierre, 2021. "Agent-based model on resilience-oriented rapid responses of road networks under seismic hazard," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Xuehua Han & Liang Wang & Dandan Xu & He Wei & Xinghua Zhang & Xiaodong Zhang, 2022. "Research Progress and Framework Construction of Urban Resilience Computational Simulation," Sustainability, MDPI, vol. 14(19), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    2. Gianluca Pescaroli & David Alexander, 2018. "Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2245-2257, November.
    3. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    5. Zhong, Jilong & Sanhedrai, Hillel & Zhang, FengMing & Yang, Yi & Guo, Shu & Yang, Shunkun & Li, Daqing, 2020. "Network endurance against cascading overload failure," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    7. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    10. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    12. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    14. Mingyuan Zhang & Juan Zhang & Gang Li & Yuan Zhao, 2020. "A Framework for Identifying the Critical Region in Water Distribution Network for Reinforcement Strategy from Preparation Resilience," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    15. Elizabeth Lawson & Raziyeh Farmani & Ewan Woodley & David Butler, 2020. "A Resilient and Sustainable Water Sector: Barriers to the Operationalisation of Resilience," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    16. Jonathan Pearson & G. Punzo & M. Mayfield & G. Brighty & A. Parsons & P. Collins & S. Jeavons & A. Tagg, 2018. "Flood resilience: consolidating knowledge between and within critical infrastructure sectors," Environment Systems and Decisions, Springer, vol. 38(3), pages 318-329, September.
    17. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    20. Beheshtian, Arash & Donaghy, Kieran P. & Richard Geddes, R. & Oliver Gao, H., 2018. "Climate-adaptive planning for the long-term resilience of transportation energy infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 99-122.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:7:p:1597-1614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.