IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i10p2087-2104.html
   My bibliography  Save this article

A Three‐Part Bayesian Network for Modeling Dwelling Fires and Their Impact upon People and Property

Author

Listed:
  • D. B. Matellini
  • A. D. Wall
  • I. D. Jenkinson
  • J. Wang
  • R. Pritchard

Abstract

In the United Kingdom, dwelling fires are responsible for the majority of all fire‐related fatalities. The development of these incidents involves the interaction of a multitude of variables that combine in many different ways. Consequently, assessment of dwelling fire risk can be complex, which often results in ambiguity during fire safety planning and decision making. In this article, a three‐part Bayesian network model is proposed to study dwelling fires from ignition through to extinguishment in order to improve confidence in dwelling fire safety assessment. The model incorporates both hard and soft data, delivering posterior probabilities for selected outcomes. Case studies demonstrate how the model functions and provide evidence of its use for planning and accident investigation.

Suggested Citation

  • D. B. Matellini & A. D. Wall & I. D. Jenkinson & J. Wang & R. Pritchard, 2018. "A Three‐Part Bayesian Network for Modeling Dwelling Fires and Their Impact upon People and Property," Risk Analysis, John Wiley & Sons, vol. 38(10), pages 2087-2104, October.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:10:p:2087-2104
    DOI: 10.1111/risa.13113
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13113
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Sun, Lili & Shenoy, Prakash P., 2007. "Using Bayesian networks for bankruptcy prediction: Some methodological issues," European Journal of Operational Research, Elsevier, vol. 180(2), pages 738-753, July.
    3. Trucco, P. & Cagno, E. & Ruggeri, F. & Grande, O., 2008. "A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 845-856.
    4. Kohda, Takehisa & Cui, Weimin, 2007. "Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1716-1723.
    5. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    6. Hanea, D.M. & Jagtman, H.M. & Ale, B.J.M., 2012. "Analysis of the Schiphol Cell Complex fire using a Bayesian belief net based model," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 115-124.
    7. Sakata, Masayo, 2004. "A cost frontier approach for estimating the determinants of cost inefficiency in Japanese fire protection management," Journal of Asian Economics, Elsevier, vol. 15(3), pages 579-590, June.
    8. Lauria, Eitel J.M. & Duchessi, Peter J., 2007. "A methodology for developing Bayesian networks: An application to information technology (IT) implementation," European Journal of Operational Research, Elsevier, vol. 179(1), pages 234-252, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matellini, D.B. & Wall, A.D. & Jenkinson, I.D. & Wang, J. & Pritchard, R., 2013. "Modelling dwelling fire development and occupancy escape using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 75-91.
    2. Dante B Matellini & Alan D Wall & Ian D Jenkinson & Jin Wang & Robert W Pritchard, 2013. "A study of human reaction during the initial stages of a dwelling fire using a Bayesian network model," Journal of Risk and Reliability, , vol. 227(2), pages 207-221, April.
    3. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Shiqi Fan & Zaili Yang & Eduardo Blanco-Davis & Jinfen Zhang & Xinping Yan, 2020. "Analysis of maritime transport accidents using Bayesian networks," Journal of Risk and Reliability, , vol. 234(3), pages 439-454, June.
    5. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    7. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    8. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    9. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    11. Wang, Likun & Yang, Zaili, 2018. "Bayesian network modelling and analysis of accident severity in waterborne transportation: A case study in China," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 277-289.
    12. Bing Wu & Huibin Tian & Xinping Yan & C. Guedes Soares, 2020. "A probabilistic consequence estimation model for collision accidents in the downstream of Yangtze River using Bayesian Networks," Journal of Risk and Reliability, , vol. 234(2), pages 422-436, April.
    13. Weiliang Qiao & Yu Liu & Xiaoxue Ma & Yang Liu, 2020. "Human Factors Analysis for Maritime Accidents Based on a Dynamic Fuzzy Bayesian Network," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 957-980, May.
    14. Abrishami, Shokoufeh & Khakzad, Nima & Hosseini, Seyed Mahmoud, 2020. "A data-based comparison of BN-HRA models in assessing human error probability: An offshore evacuation case study," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    15. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    16. Kabir, Golam & Tesfamariam, Solomon & Francisque, Alex & Sadiq, Rehan, 2015. "Evaluating risk of water mains failure using a Bayesian belief network model," European Journal of Operational Research, Elsevier, vol. 240(1), pages 220-234.
    17. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    19. Kai Pan & Hui Liu & Xiaoqing Gou & Rui Huang & Dong Ye & Haining Wang & Adam Glowacz & Jie Kong, 2022. "Towards a Systematic Description of Fault Tree Analysis Studies Using Informetric Mapping," Sustainability, MDPI, vol. 14(18), pages 1-28, September.
    20. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:10:p:2087-2104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.