IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i6p963-970.html
   My bibliography  Save this article

Introduction to the Special Series on Research Synthesis: A Cross‐Disciplinary Approach

Author

Listed:
  • Lisa A. Robinson
  • James K. Hammitt

Abstract

To estimate the effects of a policy change, analysts must often rely on available data as time and resource constraints limit their ability to commission new primary research. Research synthesis methods—including systematic review, meta‐analysis, and expert elicitation—play an important role in ensuring that this evidence is appropriately weighed and considered. We present the conclusions of a multidisciplinary Harvard Center for Risk Analysis project that evaluated and applied these methods, and introduce the resulting series of articles. The first step in any analysis is to clearly define the problem to be addressed; the second is a systematic review of the literature. Whether additional analysis is needed depends on the quality and relevance of the available data to the policy question, and the likely effect of uncertainty on the policy decision. Meta‐analysis promotes understanding the variation between studies and may be used to combine the estimates to develop values for application in policy analysis. Formal, structured expert elicitation promotes careful consideration of the evidence when data are limited or inconsistent, and aids in extrapolating to the policy context. Regardless of the methods used, clear communication of the approach, assumptions, and uncertainty is essential.

Suggested Citation

  • Lisa A. Robinson & James K. Hammitt, 2015. "Introduction to the Special Series on Research Synthesis: A Cross‐Disciplinary Approach," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 963-970, June.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:6:p:963-970
    DOI: 10.1111/risa.12437
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12437
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. World Health Organization, Foodborne Epidemiology Reference Group, Source Attribution Task Force, 2016. "Research Synthesis Methods in an Age of Globalized Risks: Lessons from the Global Burden of Foodborne Disease Expert Elicitation," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 191-202, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geovanna Hinojoza-Castro & Montserrat Gómez-Delgado & Wenseslao Plata-Rocha, 2022. "Real Estate Developers as Agents in the Simulation of Urban Sprawl," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    2. Fei Xiong & Yun Liu & Zhenjiang Zhang, 2011. "Dynamics With Co-Evolution Of Individual Inclination And Opinion," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 51-62.
    3. Karner, Alex & Niemeier, Deb, 2013. "Civil rights guidance and equity analysis methods for regional transportation plans: a critical review of literature and practice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 126-134.
    4. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    5. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    6. Laura Diaz Anadon & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2016. "Expert views - and disagreements - about the potential of energy technology R&D," Climatic Change, Springer, vol. 136(3), pages 677-691, June.
    7. Hanea, D.M. & Jagtman, H.M. & van Alphen, L.L.M.M. & Ale, B.J.M., 2010. "Quantitative and qualitative analysis of the expert and non-expert opinion in fire risk in buildings," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 729-741.
    8. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Martine J. Barons & Lael E. Walsh & Edward E. Salakpi & Linda Nichols, 2024. "A Decision Support System for Sustainable Agriculture and Food Loss Reduction under Uncertain Agricultural Policy Frameworks," Agriculture, MDPI, vol. 14(3), pages 1-21, March.
    10. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    11. Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
    12. Fabio Boschetti & Elizabeth A. Fulton & Nicola J. Grigg, 2014. "Citizens’ Views of Australia’s Future to 2050," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    13. Erin Baker & Olaitan Olaleye, 2013. "Combining Experts: Decomposition and Aggregation Order," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1116-1127, June.
    14. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.
    15. Jeremy Rohmer & Eric Chojnacki, 2021. "Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model," Environment Systems and Decisions, Springer, vol. 41(1), pages 131-146, March.
    16. Elena Verdolini & Laura Díaz Anadón & Erin Baker & Valentina Bosetti & Lara Aleluia Reis, 2018. "Future Prospects for Energy Technologies: Insights from Expert Elicitations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 133-153.
    17. Gayan Dharmarathne & Gabriela F. Nane & Andrew Robinson & Anca M. Hanea, 2023. "Shrinking the Variance in Experts’ “Classical” Weights Used in Expert Judgment Aggregation," Forecasting, MDPI, vol. 5(3), pages 1-14, August.
    18. Henry A. Roman & James K. Hammitt & Tyra L. Walsh & David M. Stieb, 2012. "Expert Elicitation of the Value per Statistical Life in an Air Pollution Context," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2133-2151, December.
    19. Stroeve, Sybert H. & Som, Pradip & van Doorn, Bas A. & (Bert) Bakker, G.J., 2016. "Strengthening air traffic safety management by moving from outcome-based towards risk-based evaluation of runway incursions," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 93-108.
    20. Josie McCulloch & Jiaqi Ge & Jonathan A. Ward & Alison Heppenstall & J. Gareth Polhill & Nick Malleson, 2022. "Calibrating Agent-Based Models Using Uncertainty Quantification Methods," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(2), pages 1-1.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:6:p:963-970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.