IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i12p2082-2091.html
   My bibliography  Save this article

On How to Deal with Deep Uncertainties in a Risk Assessment and Management Context

Author

Listed:
  • Terje Aven

Abstract

Recently, several authors have presented interesting contributions on how to meet deep or severe uncertainties in a risk analysis setting. In this article, we provide some reflections on some of the foundational pillars that this work is based on, including the meaning of concepts such as deep uncertainty, known probabilities, and correct models, the aim being to contribute to a strengthening of the scientific platform of the work, as well as providing new insights on how to best implement management policies meeting these uncertainties. We also provide perspectives on the boundaries and limitations of analytical approaches for supporting decision making in cases of deep uncertainties. A main conclusion of the article is that deep uncertainties call for managerial review and judgment that sees beyond the analytical frameworks studied in risk assessment and risk management contexts, including those now often suggested to be used, such as robust optimization techniques. This managerial review and judgment should be seen as a basic element of the risk management.

Suggested Citation

  • Terje Aven, 2013. "On How to Deal with Deep Uncertainties in a Risk Assessment and Management Context," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2082-2091, December.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:12:p:2082-2091
    DOI: 10.1111/risa.12067
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12067
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Terje Aven & Ortwin Renn, 2012. "On the Risk Management and Risk Governance of Petroleum Operations in the Barents Sea Area," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1561-1575, September.
    2. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    3. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    4. Guikema, S.D. & Aven, T., 2010. "Is ALARP applicable to the management of terrorist risks?," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 823-827.
    5. Terje Aven & Ortwin Renn, 2010. "Risk Management and Governance," Risk, Governance and Society, Springer, number 978-3-642-13926-0, September.
    6. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    7. Teng, Kuei-Yung & Thekdi, Shital A. & Lambert, James H., 2012. "Identification and evaluation of priorities in the business process of a risk or safety organization," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 74-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. von Döhren, Peer & Haase, Dagmar, 2019. "Risk assessment concerning urban ecosystem disservices: The example of street trees in Berlin, Germany," Ecosystem Services, Elsevier, vol. 40(C).
    2. Jesko Schulte & Carolina Villamil & Sophie I. Hallstedt, 2020. "Strategic Sustainability Risk Management in Product Development Companies: Key Aspects and Conceptual Approach," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    3. Monika Blišťanová & Michaela Tirpáková & Jozef Galanda, 2022. "Proposal of Risk Identification Methodology Using the Prompt List on the Example of an Air Carrier," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    4. Julie E. Shortridge & Seth D. Guikema, 2016. "Scenario Discovery with Multiple Criteria: An Evaluation of the Robust Decision‐Making Framework for Climate Change Adaptation," Risk Analysis, John Wiley & Sons, vol. 36(12), pages 2298-2312, December.
    5. Gregory F. Nemet & Laura Diaz Anadon & Elena Verdolini, 2017. "Quantifying the Effects of Expert Selection and Elicitation Design on Experts’ Confidence in Their Judgments About Future Energy Technologies," Risk Analysis, John Wiley & Sons, vol. 37(2), pages 315-330, February.
    6. Julia Reis & Julie Shortridge, 2020. "Impact of Uncertainty Parameter Distribution on Robust Decision Making Outcomes for Climate Change Adaptation under Deep Uncertainty," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 494-511, March.
    7. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    8. Spencer Wheatley & Benjamin Sovacool & Didier Sornette, 2017. "Of Disasters and Dragon Kings: A Statistical Analysis of Nuclear Power Incidents and Accidents," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 99-115, January.
    9. Jesko Schulte & Sophie I. Hallstedt, 2018. "Company Risk Management in Light of the Sustainability Transition," Sustainability, MDPI, vol. 10(11), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terje Aven & Enrico Zio, 2014. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1164-1172, July.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    4. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    6. Terje Aven, 2018. "An Emerging New Risk Analysis Science: Foundations and Implications," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 876-888, May.
    7. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. Yanwei Li & Araz Taeihagh & Martin de Jong & Andreas Klinke, 2021. "Toward a Commonly Shared Public Policy Perspective for Analyzing Risk Coping Strategies," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 519-532, March.
    10. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Aven, Terje, 2018. "How the integration of System 1-System 2 thinking and recent risk perspectives can improve risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 237-244.
    12. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    13. Emanuele Borgonovo & Alessandra Cillo & Curtis L. Smith, 2018. "On the Relationship between Safety and Decision Significance," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1541-1558, August.
    14. Emanuele Borgonovo & Alessandra Cillo, 2017. "Deciding with Thresholds: Importance Measures and Value of Information," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1828-1848, October.
    15. Tommi Ekholm & Erin Baker, 2022. "Multiple Beliefs, Dominance and Dynamic Consistency," Management Science, INFORMS, vol. 68(1), pages 529-540, January.
    16. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    17. Thomas Ying‐Jeh Chen & Valerie Nicole Washington & Terje Aven & Seth David Guikema, 2020. "Review and Evaluation of the J100‐10 Risk and Resilience Management Standard for Water and Wastewater Systems," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 608-623, March.
    18. Terje Aven, 2020. "Risk Science Contributions: Three Illustrating Examples," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1889-1899, October.
    19. Torbjørn Bjerga & Terje Aven, 2016. "Some perspectives on risk management: A security case study from the oil and gas industry," Journal of Risk and Reliability, , vol. 230(5), pages 512-520, October.
    20. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:12:p:2082-2091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.