IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v31y2011i10p1610-1621.html
   My bibliography  Save this article

Dose‐Response Model of Rocky Mountain Spotted Fever (RMSF) for Human

Author

Listed:
  • Sushil B. Tamrakar
  • Charles N. Haas

Abstract

Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose‐response models of different routes of exposure for RMSF in primates and humans. The beta‐Poisson model provided the best fit to the dose‐response data of aerosol‐exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID50) exposed human population, N50, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID10 and ID20 are 2.2 and 5.0, respectively. Moreover, the data of aerosol‐exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose‐response models fitted to different data sets are not significantly different and can be described by the same relationship.

Suggested Citation

  • Sushil B. Tamrakar & Charles N. Haas, 2011. "Dose‐Response Model of Rocky Mountain Spotted Fever (RMSF) for Human," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1610-1621, October.
  • Handle: RePEc:wly:riskan:v:31:y:2011:i:10:p:1610-1621
    DOI: 10.1111/j.1539-6924.2011.01604.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2011.01604.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2011.01604.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Greenberg & Charles Haas & Anthony Cox & Karen Lowrie & Katherine McComas & Warner North, 2012. "Ten Most Important Accomplishments in Risk Analysis, 1980–2010," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 771-781, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    2. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    3. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
    4. Amie Adkin & Neil Donaldson & Louise Kelly, 2013. "A Quantitative Assessment of the Prion Risk Associated with Wastewater from Carcass‐Handling Facilities," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1212-1227, July.
    5. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Peter F. M. Teunis & Cynthia L. Chappell & Pablo C. Okhuysen, 2002. "Cryptosporidium Dose Response Studies: Variation Between Isolates," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 175-185, February.
    7. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà, Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    8. Arnout R. H. Fischer & Aarieke E. I. De Jong & Esther D. Van Asselt & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2007. "Food Safety in the Domestic Environment: An Interdisciplinary Investigation of Microbial Hazards During Food Preparation," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1065-1082, August.
    9. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    10. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    11. Jack Schijven & Martijn Bouwknegt & Ana Maria de Roda Husman & Saskia Rutjes & Bertrand Sudre & Jonathan E. Suk & Jan C. Semenza, 2013. "A Decision Support Tool to Compare Waterborne and Foodborne Infection and/or Illness Risks Associated with Climate Change," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2154-2167, December.
    12. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    13. Jack Schijven & Gerard B. J. Rijs & Ana Maria De Roda Husman, 2005. "Quantitative Risk Assessment of FMD Virus Transmission via Water," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 13-21, February.
    14. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    15. Delphine Pessoa & Caetano Souto-Maior & Erida Gjini & Joao S Lopes & Bruno Ceña & Cláudia T Codeço & M Gabriela M Gomes, 2014. "Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-9, August.
    16. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.
    17. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2017. "Guidelines for Use of the Approximate Beta‐Poisson Dose–Response Model," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1388-1402, July.
    18. Harriet Namata & Marc Aerts & Christel Faes & Peter Teunis, 2008. "Model Averaging in Microbial Risk Assessment Using Fractional Polynomials," Risk Analysis, John Wiley & Sons, vol. 28(4), pages 891-905, August.
    19. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    20. Régis Pouillot & Benoit Garin & Noro Ravaonindrina & Kane Diop & Mahery Ratsitorahina & Domoina Ramanantsoa & Jocelyne Rocourt, 2012. "A Risk Assessment of Campylobacteriosis and Salmonellosis Linked to Chicken Meals Prepared in Households in Dakar, Senegal," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1798-1819, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:31:y:2011:i:10:p:1610-1621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.