IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i5p947-963.html
   My bibliography  Save this article

Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2—Noncancer Effects

Author

Listed:
  • David Pennington
  • Pierre Crettaz
  • Annick Tauxe
  • Lorenz Rhomberg
  • Kevin Brand
  • Olivier Jolliet

Abstract

In Part 1 of this article we developed an approach for the calculation of cancer effect measures for life cycle assessment (LCA). In this article, we propose and evaluate the method for the screening of noncancer toxicological health effects. This approach draws on the noncancer health risk assessment concept of benchmark dose, while noting important differences with regulatory applications in the objectives of an LCA study. We adopt the central tendency estimate of the toxicological effect dose inducing a 10% response over background, ED10, to provide a consistent point of departure for default linear low‐dose response estimates (βED10). This explicit estimation of low‐dose risks, while necessary in LCA, is in marked contrast to many traditional procedures for noncancer assessments. For pragmatic reasons, mechanistic thresholds and nonlinear low‐dose response curves were not implemented in the presented framework. In essence, for the comparative needs of LCA, we propose that one initially screens alternative activities or products on the degree to which the associated chemical emissions erode their margins of exposure, which may or may not be manifested as increases in disease incidence. We illustrate the method here by deriving the βED10) slope factors from bioassay data for 12 chemicals and outline some of the possibilities for extrapolation from other more readily available measures, such as the no observable adverse effect levels (NOAEL), avoiding uncertainty factors that lead to inconsistent degrees of conservatism from chemical to chemical. These extrapolations facilitated the initial calculation of slope factors for an additional 403 compounds; ranging from 10−6 to 103 (risk per mg/kg‐day dose). The potential consequences of the effects are taken into account in a preliminary approach by combining the βED10) with the severity measure disability adjusted life years (DALY), providing a screening‐level estimate of the potential consequences associated with exposures, integrated over time and space, to a given mass of chemical released into the environment for use in LCA.

Suggested Citation

  • David Pennington & Pierre Crettaz & Annick Tauxe & Lorenz Rhomberg & Kevin Brand & Olivier Jolliet, 2002. "Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2—Noncancer Effects," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 947-963, October.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:947-963
    DOI: 10.1111/1539-6924.00263
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00263
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00263?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin P. Brand & J Lorenz Rhomberg & John S. Evans, 1999. "Estimating Noncancer Uncertainty Factors: Are Ratios NOAELs Informative?," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 295-308, April.
    2. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling-Chin, J. & Heidrich, O. & Roskilly, A.P., 2016. "Life cycle assessment (LCA) – from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 352-378.
    2. Joseph V. Spadaro & Ari Rabl, 2004. "Pathway Analysis for Population‐Total Health Impacts of Toxic Metal Emissions," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1121-1141, October.
    3. Royce A. Francis, 2015. "Elusive Critical Elements of Transformative Risk Assessment Practice and Interpretation: Is Alternatives Analysis the Next Step?," Risk Analysis, John Wiley & Sons, vol. 35(11), pages 1983-1995, November.
    4. Wouter Fransman & Harrie Buist & Eelco Kuijpers & Tobias Walser & David Meyer & Esther Zondervan‐van den Beuken & Joost Westerhout & Rinke H. Klein Entink & Derk H. Brouwer, 2017. "Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1358-1374, July.
    5. Jessica Kratchman & Bing Wang & John Fox & George Gray, 2018. "Correlation of Noncancer Benchmark Doses in Short‐ and Long‐Term Rodent Bioassays," Risk Analysis, John Wiley & Sons, vol. 38(5), pages 1052-1069, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    2. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    3. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    4. Jeffrey C. Swartout & Paul S. Price & Michael L. Dourson & Heather L. Carlson‐Lynch & Russell E. Keenan, 1998. "A Probabilistic Framework for the Reference Dose (Probabilistic RfD)," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 271-282, June.
    5. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    6. Brian G. Leroux & Wendy M. Leisenring & Suresh H. Moolgavkar & Elaine M. Faustman, 1996. "A Biologically‐Based Dose—Response Model for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 449-458, August.
    7. Raimo I. Niemelä & Jorma Rantanen & Mirja K. Kiilunen, 1998. "Target Levels—Tools for Prevention," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 679-688, December.
    8. Paul S. Price & Heli M. Hollnagel & Jack M. Zabik, 2009. "Characterizing the Noncancer Toxicity of Mixtures Using Concepts from the TTC and Quantitative Models of Uncertainty in Mixture Toxicity," Risk Analysis, John Wiley & Sons, vol. 29(11), pages 1534-1548, November.
    9. Fereshteh Kalantari & Joakim Ringblom & Salomon Sand & Mattias Öberg, 2017. "Influence of Distribution of Animals between Dose Groups on Estimated Benchmark Dose and Animal Distress for Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1716-1728, September.
    10. Jeanne L. Sebaugh & James D. Wilson & Michael W. Tucker & William J. Adams, 1991. "A Study of the Shape of Dose‐Response Curves for Acute Lethality at Low Response: A “Megadaphnia Study”," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 633-640, December.
    11. Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
    12. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    13. Daniel Krewski & Robert Smythe & Karen Y. Fung, 2002. "Optimal Designs for Estimating the Effective Dose in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1195-1205, December.
    14. Julie S. Najita & Paul J. Catalano, 2013. "On Determining the BMD from Multiple Outcomes in Developmental Toxicity Studies when One Outcome is Intentionally Missing," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1500-1509, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:5:p:947-963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.