IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v18y1998i6p679-688.html
   My bibliography  Save this article

Target Levels—Tools for Prevention

Author

Listed:
  • Raimo I. Niemelä
  • Jorma Rantanen
  • Mirja K. Kiilunen

Abstract

Although occupational exposure limits are sought to establish health‐based standards, they do not always give a sufficient basis for planning an indoor air climate that is good and comfortable for the occupants in industrial work rooms. This paper considers methodologies by which the desired level, i.e., target level, of air quality in industrial settings can be defined, taking into account feasibility issues. Risk assessment based on health criteria is compared with risk‐assessment based on “Best Available Technology” (BAT). Because health‐based risk estimates at low concentration regions are rather inaccurate, the technology‐based approach is emphasized. The technological approach is based on information on the prevailing concentrations in industrial work environments and the benchmark air quality attained with the best achievable technology. The prevailing contaminant concentrations are obtained from a contaminant exposure databank, and the benchmark air quality by field measurements in industrial work rooms equipped with advanced ventilation and production technology. As an example, the target level assessment has been applied to formaldehyde, total inorganic dust and hexavalent chromium, which are common contaminants in work room air.

Suggested Citation

  • Raimo I. Niemelä & Jorma Rantanen & Mirja K. Kiilunen, 1998. "Target Levels—Tools for Prevention," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 679-688, December.
  • Handle: RePEc:wly:riskan:v:18:y:1998:i:6:p:679-688
    DOI: 10.1111/j.1539-6924.1998.tb01112.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1998.tb01112.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1998.tb01112.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    2. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    3. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    4. Jeffrey C. Swartout & Paul S. Price & Michael L. Dourson & Heather L. Carlson‐Lynch & Russell E. Keenan, 1998. "A Probabilistic Framework for the Reference Dose (Probabilistic RfD)," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 271-282, June.
    5. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    6. Brian G. Leroux & Wendy M. Leisenring & Suresh H. Moolgavkar & Elaine M. Faustman, 1996. "A Biologically‐Based Dose—Response Model for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 449-458, August.
    7. David Pennington & Pierre Crettaz & Annick Tauxe & Lorenz Rhomberg & Kevin Brand & Olivier Jolliet, 2002. "Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2—Noncancer Effects," Risk Analysis, John Wiley & Sons, vol. 22(5), pages 947-963, October.
    8. Fereshteh Kalantari & Joakim Ringblom & Salomon Sand & Mattias Öberg, 2017. "Influence of Distribution of Animals between Dose Groups on Estimated Benchmark Dose and Animal Distress for Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1716-1728, September.
    9. Jeanne L. Sebaugh & James D. Wilson & Michael W. Tucker & William J. Adams, 1991. "A Study of the Shape of Dose‐Response Curves for Acute Lethality at Low Response: A “Megadaphnia Study”," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 633-640, December.
    10. Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
    11. Ronald J. Bosch & David Wypij & Louise M. Ryan, 1996. "A Semiparametric Approach to Risk Assessment for Quantitative Outcomes," Risk Analysis, John Wiley & Sons, vol. 16(5), pages 657-665, October.
    12. Daniel Krewski & Robert Smythe & Karen Y. Fung, 2002. "Optimal Designs for Estimating the Effective Dose in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1195-1205, December.
    13. Julie S. Najita & Paul J. Catalano, 2013. "On Determining the BMD from Multiple Outcomes in Developmental Toxicity Studies when One Outcome is Intentionally Missing," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1500-1509, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:18:y:1998:i:6:p:679-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.