IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v10y1990i4p575-580.html
   My bibliography  Save this article

Routes of Chloroform Exposure and Body Burden from Showering with Chlorinated Tap Water

Author

Listed:
  • Wan K. Jo
  • Clifford P. Weisel
  • Paul J. Lioy

Abstract

While there is an awareness of the need to quantify inhalation exposure from showers, the potential for dermal exposure to organic contaminants in showers has not been appreciated or explored. To establish routes of environmental exposure from showers, comparisons of the concentration of chloroform in exhaled breath after a normal shower with municipal tap water were made with those after an inhalation‐only exposure. The postexposure chloroform breath concentrations ranged from 6.0–21 μg/m3 for normal showers and 2.4 to 10 μg/m3 for inhalation‐only exposure, while the pre‐exposure concentrations were all less than the minimum detection limit of 0.86 μg/m3. According to an F‐test, the difference between the normal shower and the inhalation‐only exposures was considered significant at a probability of p= 0.0001. Based on the difference, the mean internal dose due to dermal exposure was found to be approximately equal to that due to the inhalation exposure. The effect of the showering activities on the concentration of chloroform shower air was examined by comparing air concentrations during a normal shower with the air concentrations obtained when the shower was unoccupied. The F‐test showed that there is no significant difference between the two sets of data.

Suggested Citation

  • Wan K. Jo & Clifford P. Weisel & Paul J. Lioy, 1990. "Routes of Chloroform Exposure and Body Burden from Showering with Chlorinated Tap Water," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 575-580, December.
  • Handle: RePEc:wly:riskan:v:10:y:1990:i:4:p:575-580
    DOI: 10.1111/j.1539-6924.1990.tb00541.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1990.tb00541.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1990.tb00541.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathieu Valcke & Kannan Krishnan, 2010. "An Assessment of the Interindividual Variability of Internal Dosimetry during Multi-Route Exposure to Drinking Water Contaminants," IJERPH, MDPI, vol. 7(11), pages 1-21, November.
    2. Kenneth T. Bogen, 2013. "Dermal Uptake of 18 Dilute Aqueous Chemicals: In Vivo Disappearance‐Method Measures Greatly Exceed In Vitro‐Based Predictions," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1334-1352, July.
    3. Wan K. Jo & Clifford P. Weisel & Paul J. Lioy, 1990. "Chloroform Exposure and the Health Risk Associated with Multiple Uses of Chlorinated Tap Water," Risk Analysis, John Wiley & Sons, vol. 10(4), pages 581-585, December.
    4. Thomas E. McKone & Robert A. Howd, 1992. "Estimating Dermal Uptake of Nonionic Organic Chemicals from Water and Soil: I. Unified Fugacity‐Based Models for Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 12(4), pages 543-557, December.
    5. Mohammad S. Islam & Luhua Zhao & James N. McDougal & Gordon L. Flynn, 1995. "Uptake of Chloroform by Skin During Short Exposures to Contaminated Water," Risk Analysis, John Wiley & Sons, vol. 15(3), pages 343-352, June.
    6. Brent Finley & Dennis Paustenbach, 1994. "The Benefits of Probabilistic Exposure Assessment: Three Case Studies Involving Contaminated Air, Water, and Soil," Risk Analysis, John Wiley & Sons, vol. 14(1), pages 53-73, February.
    7. Tine Bizjak & Marco Capodiferro & Deepika Deepika & Öykü Dinçkol & Vazha Dzhedzheia & Lorena Lopez-Suarez & Ioannis Petridis & Agneta A. Runkel & Dayna R. Schultz & Branko Kontić, 2022. "Human Biomonitoring Data in Health Risk Assessments Published in Peer-Reviewed Journals between 2016 and 2021: Confronting Reality after a Preliminary Review," IJERPH, MDPI, vol. 19(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:10:y:1990:i:4:p:575-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.