IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v60y2013i1p56-63.html
   My bibliography  Save this article

The knapsack problem with a minimum filling constraint

Author

Listed:
  • Zhou Xu

Abstract

We study a knapsack problem with an additional minimum filling constraint, such that the total weight of selected items cannot be less than a given threshold. The problem has several applications in shipping, e‐commerce, and transportation service procurement. When the threshold equals the knapsack capacity, even finding a feasible solution to the problem is NP‐hard. Therefore, we consider the case when the ratio α of threshold to capacity is less than 1. For this case, we develop an approximation scheme that returns a feasible solution with a total profit not less than (1 ‐ ε) times the total profit of an optimal solution for any ε > 0, and with a running time polynomial in the number of items, 1/ε, and 1/(1‐α). © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013

Suggested Citation

  • Zhou Xu, 2013. "The knapsack problem with a minimum filling constraint," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 56-63, February.
  • Handle: RePEc:wly:navres:v:60:y:2013:i:1:p:56-63
    DOI: 10.1002/nav.21520
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21520
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hans Kellerer & Ulrich Pferschy, 2004. "Improved Dynamic Programming in Connection with an FPTAS for the Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 5-11, March.
    2. Harvey M. Salkin & Cornelis A. De Kluyver, 1975. "The knapsack problem: A survey," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 22(1), pages 127-144, March.
    3. Chi To Ng & Mikhail Yakovlevich Kovalyov & Tai Chiu Edwin Cheng, 2008. "An FPTAS for a supply scheduling problem with non‐monotone cost functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(3), pages 194-199, April.
    4. Hans Kellerer & Ulrich Pferschy, 1999. "A New Fully Polynomial Time Approximation Scheme for the Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 3(1), pages 59-71, July.
    5. Eugene L. Lawler, 1979. "Fast Approximation Algorithms for Knapsack Problems," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 339-356, November.
    6. Andrea Bettinelli & Alberto Ceselli & Giovanni Righini, 2010. "A branch-and-price algorithm for the variable size bin packing problem with minimum filling constraint," Annals of Operations Research, Springer, vol. 179(1), pages 221-241, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    2. Feng Li & Zhou Xu & Zhi-Long Chen, 2020. "Production and Transportation Integration for Commit-to-Delivery Mode with General Shipping Costs," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1012-1029, October.
    3. Muter, İbrahim & Sezer, Zeynep, 2018. "Algorithms for the one-dimensional two-stage cutting stock problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 20-32.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Bertazzi, 2012. "Minimum and Worst-Case Performance Ratios of Rollout Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 378-393, February.
    2. Jooken, Jorik & Leyman, Pieter & De Causmaecker, Patrick, 2022. "A new class of hard problem instances for the 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 841-854.
    3. Rui Diao & Ya-Feng Liu & Yu-Hong Dai, 2017. "A new fully polynomial time approximation scheme for the interval subset sum problem," Journal of Global Optimization, Springer, vol. 68(4), pages 749-775, August.
    4. Zhenbo Wang & Wenxun Xing, 2009. "A successive approximation algorithm for the multiple knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 17(4), pages 347-366, May.
    5. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    6. Stephan Helfrich & Arne Herzel & Stefan Ruzika & Clemens Thielen, 2022. "An approximation algorithm for a general class of multi-parametric optimization problems," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1459-1494, October.
    7. Rebi Daldal & Iftah Gamzu & Danny Segev & Tonguç Ünlüyurt, 2016. "Approximation algorithms for sequential batch‐testing of series systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 275-286, June.
    8. Halman, Nir & Kellerer, Hans & Strusevich, Vitaly A., 2018. "Approximation schemes for non-separable non-linear boolean programming problems under nested knapsack constraints," European Journal of Operational Research, Elsevier, vol. 270(2), pages 435-447.
    9. Caprara, Alberto & Kellerer, Hans & Pferschy, Ulrich & Pisinger, David, 2000. "Approximation algorithms for knapsack problems with cardinality constraints," European Journal of Operational Research, Elsevier, vol. 123(2), pages 333-345, June.
    10. Aardal, Karen & van den Berg, Pieter L. & Gijswijt, Dion & Li, Shanfei, 2015. "Approximation algorithms for hard capacitated k-facility location problems," European Journal of Operational Research, Elsevier, vol. 242(2), pages 358-368.
    11. Haris Aziz & Sujit Gujar & Manisha Padala & Mashbat Suzuki & Jeremy Vollen, 2022. "Coordinating Monetary Contributions in Participatory Budgeting," Papers 2206.05966, arXiv.org, revised Feb 2023.
    12. Daria Dzyabura & Srikanth Jagabathula, 2018. "Offline Assortment Optimization in the Presence of an Online Channel," Management Science, INFORMS, vol. 64(6), pages 2767-2786, June.
    13. Francisco Castillo-Zunino & Pinar Keskinocak, 2021. "Bi-criteria multiple knapsack problem with grouped items," Journal of Heuristics, Springer, vol. 27(5), pages 747-789, October.
    14. Ranka Gojković & Goran Đurić & Danijela Tadić & Snežana Nestić & Aleksandar Aleksić, 2021. "Evaluation and Selection of the Quality Methods for Manufacturing Process Reliability Improvement—Intuitionistic Fuzzy Sets and Genetic Algorithm Approach," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    15. Wilbaut, Christophe & Todosijevic, Raca & Hanafi, Saïd & Fréville, Arnaud, 2023. "Heuristic and exact reduction procedures to solve the discounted 0–1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 901-911.
    16. Kameng Nip & Zhenbo Wang, 2019. "On the approximability of the two-phase knapsack problem," Journal of Combinatorial Optimization, Springer, vol. 38(4), pages 1155-1179, November.
    17. Hu, Qian & Zhu, Wenbin & Qin, Hu & Lim, Andrew, 2017. "A branch-and-price algorithm for the two-dimensional vector packing problem with piecewise linear cost function," European Journal of Operational Research, Elsevier, vol. 260(1), pages 70-80.
    18. Luo, Wenchang & Gu, Boyuan & Lin, Guohui, 2018. "Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments," European Journal of Operational Research, Elsevier, vol. 271(2), pages 462-473.
    19. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    20. Ruxian Wang & Ozge Sahin, 2018. "The Impact of Consumer Search Cost on Assortment Planning and Pricing," Management Science, INFORMS, vol. 64(8), pages 3649-3666, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:60:y:2013:i:1:p:56-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.