IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v57y2010i4p354-366.html
   My bibliography  Save this article

Modeling and analysis of multiobjective lot splitting for N‐product M‐machine flowshop lines

Author

Listed:
  • Yossi Bukchin
  • Michael Masin
  • Rinat Kirshner

Abstract

Lot splitting is a new approach for improving productivity by dividing production lots into sublots. This approach enables accelerating production flow, reducing lead‐time and increasing the utilization of organization resources. Most of the lot splitting models in the literature have addressed a single objective problem, usually the makespan or flowtime objectives. Simultaneous minimization of these two objectives has rarely been addressed in the literature despite of its high relevancy to most industrial environments. This work aims at solving a multiobjective lot splitting problem for multiple products in a flowshop environment. Tight mixed‐integer linear programming (MILP) formulations for minimizing the makespan and flowtime are presented. Then, the MinMax solution, which takes both objectives into consideration, is defined and suggested as an alternative objective. By solving the MILP model, it was found that minimizing one objective results in an average loss of about 15% in the other objective. The MinMax solution, on the other hand, results in an average loss of 4.6% from the furthest objective and 2.5% from the closest objective. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010

Suggested Citation

  • Yossi Bukchin & Michael Masin & Rinat Kirshner, 2010. "Modeling and analysis of multiobjective lot splitting for N‐product M‐machine flowshop lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(4), pages 354-366, June.
  • Handle: RePEc:wly:navres:v:57:y:2010:i:4:p:354-366
    DOI: 10.1002/nav.20409
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20409
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vickson, R. G., 1995. "Optimal lot streaming for multiple products in a two-machine flow shop," European Journal of Operational Research, Elsevier, vol. 85(3), pages 556-575, September.
    2. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
    3. Sen, Alper & Topaloglu, Engin & Benli, Omer S., 1998. "Optimal streaming of a single job in a two-stage flow shop," European Journal of Operational Research, Elsevier, vol. 110(1), pages 42-62, October.
    4. Kalir, Adar A. & Sarin, Subhash C., 2001. "A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots," Omega, Elsevier, vol. 29(6), pages 577-584, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    2. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    3. Adar A. Kalir & Subhash C. Sarin, 2003. "Constructing Near Optimal Schedules for the Flow-Shop Lot Streaming Problem with Sublot-Attached Setups," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 23-44, March.
    4. Liu, Jiyin, 2008. "Single-job lot streaming in m - 1 two-stage hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1171-1183, June.
    5. Zhang, Wei & Yin, Changyu & Liu, Jiyin & Linn, Richard J., 2005. "Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 96(2), pages 189-200, May.
    6. Chiu, Huan Neng & Chang, Jen Huei, 2005. "Cost models for lot streaming in a multistage flow shop," Omega, Elsevier, vol. 33(5), pages 435-450, October.
    7. C. A. Glass & C. N. Potts, 1998. "Structural Properties of Lot Streaming in a Flow Shop," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 624-639, August.
    8. Tseng, Chao-Tang & Liao, Ching-Jong, 2008. "A discrete particle swarm optimization for lot-streaming flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 360-373, December.
    9. V. Anjana & R. Sridharan & P. N. Ram Kumar, 2020. "Metaheuristics for solving a multi-objective flow shop scheduling problem with sequence-dependent setup times," Journal of Scheduling, Springer, vol. 23(1), pages 49-69, February.
    10. J E C Arroyo & V A Armentano, 2004. "A partial enumeration heuristic for multi-objective flowshop scheduling problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 1000-1007, September.
    11. Laha, Dipak & Sarin, Subhash C., 2009. "A heuristic to minimize total flow time in permutation flow shop," Omega, Elsevier, vol. 37(3), pages 734-739, June.
    12. Huang, Rong-Hwa & Yang, Chang-Lin, 2008. "Overlapping production scheduling planning with multiple objectives--An ant colony approach," International Journal of Production Economics, Elsevier, vol. 115(1), pages 163-170, September.
    13. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    14. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "A modified artificial bee colony algorithm for order acceptance in two-machine flow shops," International Journal of Production Economics, Elsevier, vol. 141(1), pages 14-23.
    15. Jaber, Mohamad Y. & Khan, Mehmood, 2010. "Managing yield by lot splitting in a serial production line with learning, rework and scrap," International Journal of Production Economics, Elsevier, vol. 124(1), pages 32-39, March.
    16. Martin, Clarence H, 2009. "A hybrid genetic algorithm/mathematical programming approach to the multi-family flowshop scheduling problem with lot streaming," Omega, Elsevier, vol. 37(1), pages 126-137, February.
    17. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    18. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    19. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.
    20. Ruiz, Ruben & Stutzle, Thomas, 2008. "An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with makespan and weighted tardiness objectives," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1143-1159, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:57:y:2010:i:4:p:354-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.