IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v52y2005i1p93-102.html
   My bibliography  Save this article

Finding the Kth shortest path in a time‐schedule network

Author

Listed:
  • Yen‐Liang Chen
  • Kwei Tang

Abstract

We consider the problem of finding the Kth shortest path for a time‐schedule network, where each node in the network has a list of prespecified departure times, and departure from the node can take place only at one of these departure times. We develop a polynomial time algorithm independent of K for finding the Kth shortest path. The proposed algorithm constructs a map structure at each node in the network, using which we can directly find the Kth shortest path without having to enumerate the first K − 1 paths. Since the same map structure is used for different K values, it is not necessary to reconstruct the table for additional paths. Consequently, the algorithm is suitable for directly finding multiple shortest paths in the same network. Furthermore, the algorithm is modified slightly for enumerating the first K shortest paths and is shown to have the lowest possible time complexity under a condition that holds for most practical networks. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005.

Suggested Citation

  • Yen‐Liang Chen & Kwei Tang, 2005. "Finding the Kth shortest path in a time‐schedule network," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 93-102, February.
  • Handle: RePEc:wly:navres:v:52:y:2005:i:1:p:93-102
    DOI: 10.1002/nav.20061
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.20061
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.20061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    2. Jin Y. Yen, 1971. "Finding the K Shortest Loopless Paths in a Network," Management Science, INFORMS, vol. 17(11), pages 712-716, July.
    3. Y-L Chen & D Rinks & K Tang, 2001. "The first K minimum cost paths in a time-schedule network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(1), pages 102-108, January.
    4. B. L. Fox, 1978. "Data Structures and Computer Science Techniques in Operations Research," Operations Research, INFORMS, vol. 26(5), pages 686-717, October.
    5. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Jianlin & Chen, Yanyan & Wang, Yang & Li, Tongfei & Li, Yongxing, 2021. "A new global method for identifying urban rail transit key station during COVID-19: A case study of Beijing, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    2. Baldacci, Roberto & Mingozzi, Aristide & Roberti, Roberto, 2012. "Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints," European Journal of Operational Research, Elsevier, vol. 218(1), pages 1-6.
    3. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    4. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    5. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    6. Russell Bent & Pascal Van Hentenryck, 2004. "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 38(4), pages 515-530, November.
    7. Range, Troels Martin, 2013. "Exploiting Set-Based Structures to Accelerate Dynamic Programming Algorithms for the Elementary Shortest Path Problem with Resource Constraints," Discussion Papers on Economics 17/2013, University of Southern Denmark, Department of Economics.
    8. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    9. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    10. Pedro Munari & Martin Savelsbergh, 2020. "A Column Generation-Based Heuristic for the Split Delivery Vehicle Routing Problem with Time Windows," SN Operations Research Forum, Springer, vol. 1(4), pages 1-24, December.
    11. Diego Pecin & Claudio Contardo & Guy Desaulniers & Eduardo Uchoa, 2017. "New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 489-502, August.
    12. Russell, Robert A. & Chiang, Wen-Chyuan, 2006. "Scatter search for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 169(2), pages 606-622, March.
    13. Luigi Di Puglia Pugliese & Francesca Guerriero, 2016. "On the shortest path problem with negative cost cycles," Computational Optimization and Applications, Springer, vol. 63(2), pages 559-583, March.
    14. Matsatsinis, Nikolaos F., 2004. "Towards a decision support system for the ready concrete distribution system: A case of a Greek company," European Journal of Operational Research, Elsevier, vol. 152(2), pages 487-499, January.
    15. Hong, Sung-Chul & Park, Yang-Byung, 1999. "A heuristic for bi-objective vehicle routing with time window constraints," International Journal of Production Economics, Elsevier, vol. 62(3), pages 249-258, September.
    16. Stefan Irnich & Daniel Villeneuve, 2006. "The Shortest-Path Problem with Resource Constraints and k -Cycle Elimination for k (ge) 3," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 391-406, August.
    17. Vicky Mak & Andreas Ernst, 2007. "New cutting-planes for the time- and/or precedence-constrained ATSP and directed VRP," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 69-98, August.
    18. Dillmann, Roland & Becker, Burkhard & Beckefeld, Volker, 1996. "Practical aspects of route planning for magazine and newspaper wholesalers," European Journal of Operational Research, Elsevier, vol. 90(1), pages 1-12, April.
    19. Said Dabia & Stefan Ropke & Tom van Woensel, 2019. "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts," Transportation Science, INFORMS, vol. 53(5), pages 1354-1371, September.
    20. Lysgaard, Jens, 2004. "Reachability cuts for the vehicle routing problem with time windows," CORAL Working Papers L-2004-01, University of Aarhus, Aarhus School of Business, Department of Business Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:52:y:2005:i:1:p:93-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.