IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v51y2004i3p446-464.html
   My bibliography  Save this article

A balancing problem for mixed model assembly lines with a paced moving conveyor

Author

Listed:
  • Xiaobo Zhao
  • Katsuhisa Ohno
  • Hon‐Shiang Lau

Abstract

We state a balancing problem for mixed model assembly lines with a paced moving conveyor as: Given the daily assembling sequence of the models, the tasks of each model, the precedence relations among the tasks, and the operations parameters of the assembly line, assign the tasks of the models to the workstations so as to minimize the total overload time. Several characteristics of the problem are investigated. A line‐balancing heuristic is proposed based on a lower bound of the total overload time. A practical procedure is provided for estimating the deviation of any given line‐balance solution from the theoretical optimum. Numerical examples are given to illustrate the methodology. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.

Suggested Citation

  • Xiaobo Zhao & Katsuhisa Ohno & Hon‐Shiang Lau, 2004. "A balancing problem for mixed model assembly lines with a paced moving conveyor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 446-464, April.
  • Handle: RePEc:wly:navres:v:51:y:2004:i:3:p:446-464
    DOI: 10.1002/nav.10116
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10116
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Klein, Robert & Scholl, Armin, 1996. "Maximizing the production rate in simple assembly line balancing -- A branch and bound procedure," European Journal of Operational Research, Elsevier, vol. 91(2), pages 367-385, June.
    2. Chung-Yee Lee & George L. Vairaktarakis, 1997. "Workforce Planning in Mixed Model Assembly Systems," Operations Research, INFORMS, vol. 45(4), pages 553-567, August.
    3. Candace Arai Yano & Ram Rachamadugu, 1991. "Sequencing to Minimize Work Overload in Assembly Lines with Product Options," Management Science, INFORMS, vol. 37(5), pages 572-586, May.
    4. Gagnon, R. J. & Ghosh, S., 1991. "Assembly line research: Historical roots, research life cycles and future directions," Omega, Elsevier, vol. 19(5), pages 381-399.
    5. Li-Hui Tsai, 1995. "Mixed-Model Sequencing to Minimize Utility Work and the Risk of Conveyor Stoppage," Management Science, INFORMS, vol. 41(3), pages 485-495, March.
    6. Nick T. Thomopoulos, 1970. "Mixed Model Line Balancing with Smoothed Station Assignments," Management Science, INFORMS, vol. 16(9), pages 593-603, May.
    7. Xiaobo, Zhao & Ohno, Katsuhisa, 2000. "Properties of a sequencing problem for a mixed model assembly line with conveyor stoppages," European Journal of Operational Research, Elsevier, vol. 124(3), pages 560-570, August.
    8. Thomas R. Hoffmann, 1992. "Eureka: A Hybrid System for Assembly Line Balancing," Management Science, INFORMS, vol. 38(1), pages 39-47, January.
    9. Ahmet Bolat, 1997. "Efficient methods for sequencing minimum job sets on mixed model assembly lines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(5), pages 419-437, August.
    10. Gokcen, Hadi & Erel, Erdal, 1997. "A goal programming approach to mixed-model assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 48(2), pages 177-185, January.
    11. McMullen, Patrick R. & Frazier, Gregory V., 1997. "A heuristic for solving mixed-model line balancing problems with stochastic task durations and parallel stations," International Journal of Production Economics, Elsevier, vol. 51(3), pages 177-190, September.
    12. Yow-yuh Leu & Philip Huang & Roberta Russell, 1997. "Using beam search techniques for sequencing mixed-model assembly lines," Annals of Operations Research, Springer, vol. 70(0), pages 379-397, April.
    13. Z Xiaobo & Z Zhou, 1999. "Algorithms for Toyota's goal of sequencing mixed models on an assembly line with multiple workstations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(7), pages 704-710, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaobo Zhao & Jianyong Liu & Katsuhisa Ohno & Shigenori Kotani, 2007. "Modeling and analysis of a mixed‐model assembly line with stochastic operation times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 681-691, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobo Zhao & Jianyong Liu & Katsuhisa Ohno & Shigenori Kotani, 2007. "Modeling and analysis of a mixed‐model assembly line with stochastic operation times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 681-691, September.
    2. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    3. Bautista, Joaquin & Cano, Jaime, 2008. "Minimizing work overload in mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 112(1), pages 177-191, March.
    4. Bautista, Joaquín & Cano, Alberto & Alfaro, Rocío, 2012. "Models for MMSP-W considering workstation dependencies: A case study of Nissan’s Barcelona plant," European Journal of Operational Research, Elsevier, vol. 223(3), pages 669-679.
    5. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    6. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    7. Matthießen, Lars & Drexl, Andreas & Kimms, Alf, 2000. "Constraint propagation algorithms for the car sequencing problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 531, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    8. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.
    9. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2007. "A classification of assembly line balancing problems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 674-693, December.
    11. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    12. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    13. Marshall L. Fisher & Christopher D. Ittner, 1999. "The Impact of Product Variety on Automobile Assembly Operations: Empirical Evidence and Simulation Analysis," Management Science, INFORMS, vol. 45(6), pages 771-786, June.
    14. Sikora, Celso Gustavo Stall, 2024. "Balancing mixed-model assembly lines for random sequences," European Journal of Operational Research, Elsevier, vol. 314(2), pages 597-611.
    15. Drexl, Andreas & Kimms, Alf, 1999. "Belastungsorientierte Just-in-Time Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 502, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Sprecher, Arno, 2000. "SALBLIB: Challenging instances for assembly line balancing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 526, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Jin, Mingzhou & Luo, Yi & Eksioglu, Sandra D., 2008. "Integration of production sequencing and outbound logistics in the automotive industry," International Journal of Production Economics, Elsevier, vol. 113(2), pages 766-774, June.
    18. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    19. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    20. A Lim & Z Xu, 2009. "Searching optimal resequencing and feature assignment on an automated assembly line," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 361-371, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:51:y:2004:i:3:p:446-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.