IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v50y2003i6p574-591.html
   My bibliography  Save this article

Network reliability assessment in a random environment

Author

Listed:
  • S. Özekici
  • R. Soyer

Abstract

In this paper we consider networks that consist of components operating under a randomly changing common environment. Our work is motivated by power system networks that are subject to fluctuating weather conditions over time that affect the performance of the network. We develop a general setup for any network that is subject to such environment and present results for network reliability assessment under two repair scenarios. We also present Bayesian analysis of network failure data and illustrate how reliability predictions can be obtained for the network. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 574–591, 2003

Suggested Citation

  • S. Özekici & R. Soyer, 2003. "Network reliability assessment in a random environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(6), pages 574-591, September.
  • Handle: RePEc:wly:navres:v:50:y:2003:i:6:p:574-591
    DOI: 10.1002/nav.10072
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.10072
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.10072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert, Christian P. & Celeux, Gilles & Diebolt, Jean, 1993. "Bayesian estimation of hidden Markov chains: a stochastic implementation," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 77-83, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. E. Lerzan Örmeci & Evrim Didem Güneş & Derya Kunduzcu, 2016. "A Modeling Framework for Control of Preventive Services," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 227-244, May.
    2. Lee, Joohyun & Kwak, Jaewook & Lee, Hyang-Won & Shroff, Ness B., 2018. "Finding minimum node separators: A Markov chain Monte Carlo method," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 225-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosychuk, Rhonda J. & Shofiqul Islam, 2009. "Parameter estimation in a model for misclassified Markov data -- a Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3805-3816, September.
    2. Savannah Wei Shi & Michel Wedel & F. G. M. (Rik) Pieters, 2013. "Information Acquisition During Online Decision Making: A Model-Based Exploration Using Eye-Tracking Data," Management Science, INFORMS, vol. 59(5), pages 1009-1026, May.
    3. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    4. Tao, Laifa & Ma, Jian & Cheng, Yujie & Noktehdan, Azadeh & Chong, Jin & Lu, Chen, 2017. "A review of stochastic battery models and health management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 716-732.
    5. Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
    6. Shuai Liu & Xiao-Yu Xu & Kai Zhao & Li-Ming Xiao & Qi Li, 2021. "Understanding the Complexity of Regional Innovation Capacity Dynamics in China: From the Perspective of Hidden Markov Model," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    7. Rosella Castellano & Luisa Scaccia, 2014. "Can CDS indexes signal future turmoils in the stock market? A Markov switching perspective," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(2), pages 285-305, June.
    8. McLachlan, Geoffrey J. & Krishnan, Thriyambakam & Ng, See Ket, 2004. "The EM Algorithm," Papers 2004,24, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    9. Chris Sherlock & Tatiana Xifara & Sandra Telfer & Mike Begon, 2013. "A coupled hidden Markov model for disease interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 609-627, August.
    10. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    11. Ralf van der Lans & Rik Pieters & Michel Wedel, 2008. "—Competitive Brand Salience," Marketing Science, INFORMS, vol. 27(5), pages 922-931, 09-10.
    12. Chih-chiang Yang, 2007. "Confirmatory and Structural Categorical Latent Variables Models," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(6), pages 831-849, December.
    13. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    14. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:50:y:2003:i:6:p:574-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.