IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v62y2013i4p609-627.html
   My bibliography  Save this article

A coupled hidden Markov model for disease interactions

Author

Listed:
  • Chris Sherlock
  • Tatiana Xifara
  • Sandra Telfer
  • Mike Begon

Abstract

No abstract is available for this item.

Suggested Citation

  • Chris Sherlock & Tatiana Xifara & Sandra Telfer & Mike Begon, 2013. "A coupled hidden Markov model for disease interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 609-627, August.
  • Handle: RePEc:bla:jorssc:v:62:y:2013:i:4:p:609-627
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.12015
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Fearnhead & Chris Sherlock, 2006. "An exact Gibbs sampler for the Markov‐modulated Poisson process," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 767-784, November.
    2. Marc Chadeau‐Hyam & Paul S. Clarke & Chantal Guihenneuc‐Jouyaux & Simon N. Cousens & Robert G. Will & Azra C. Ghani, 2010. "An application of hidden Markov models to the French variant Creutzfeldt–Jakob disease epidemic," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 839-853, November.
    3. Chantal Guihenneuc-Jouyaux & Sylvia Richardson & Ira M. Longini Jr., 2000. "Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline," Biometrics, The International Biometric Society, vol. 56(3), pages 733-741, September.
    4. Roger Pradel, 2005. "Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States," Biometrics, The International Biometric Society, vol. 61(2), pages 442-447, June.
    5. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    6. Robert, Christian P. & Celeux, Gilles & Diebolt, Jean, 1993. "Bayesian estimation of hidden Markov chains: a stochastic implementation," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 77-83, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marius Ötting & Roland Langrock & Antonello Maruotti, 2023. "A copula-based multivariate hidden Markov model for modelling momentum in football," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 9-27, March.
    2. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    3. Colombi, R. & Giordano, S., 2015. "Multiple hidden Markov models for categorical time series," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 19-30.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosychuk, Rhonda J. & Shofiqul Islam, 2009. "Parameter estimation in a model for misclassified Markov data -- a Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3805-3816, September.
    2. Zhou, Jie & Song, Xinyuan & Sun, Liuquan, 2020. "Continuous time hidden Markov model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    3. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    4. Chih-chiang Yang, 2007. "Confirmatory and Structural Categorical Latent Variables Models," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(6), pages 831-849, December.
    5. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    6. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    7. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    8. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Oliver, Lauren J. & Morgan, Byron J.T. & Durant, Sarah M. & Pettorelli, Nathalie, 2011. "Individual heterogeneity in recapture probability and survival estimates in cheetah," Ecological Modelling, Elsevier, vol. 222(3), pages 776-784.
    10. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    11. Xianguo HUANG & Roberto LEON-GONZALEZ & Somrasri YUPHO, 2013. "Financial Integration from a Time-Varying Cointegration Perspective," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(12), pages 1473-1487.
    12. Jia Liu & John M. Maheu & Yong Song, 2024. "Identification and forecasting of bull and bear markets using multivariate returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
    13. Nima Nonejad, 2013. "Time-Consistency Problem and the Behavior of US Inflation from 1970 to 2008," CREATES Research Papers 2013-25, Department of Economics and Business Economics, Aarhus University.
    14. Chan, Joshua C.C. & Santi, Caterina, 2021. "Speculative bubbles in present-value models: A Bayesian Markov-switching state space approach," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    15. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    16. Sylvia Frühwirth‐Schnatter & Sylvia Kaufmann, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305, April.
    17. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    18. Sylvia Kaufmann, 2002. "Is there an asymmetric effect of monetary policy over time? A Bayesian analysis using Austrian data," Empirical Economics, Springer, vol. 27(2), pages 277-297.
    19. Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
    20. AitSahlia, Farid & Yoon, Joon-Hui, 2016. "Information stages in efficient markets," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 84-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:62:y:2013:i:4:p:609-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.