IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v46y1999i7p845-863.html
   My bibliography  Save this article

Scheduling maintenance and semiresumable jobs on a single machine

Author

Listed:
  • Gregory H. Graves
  • Chung‐Yee Lee

Abstract

The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP‐complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP‐complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999

Suggested Citation

  • Gregory H. Graves & Chung‐Yee Lee, 1999. "Scheduling maintenance and semiresumable jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(7), pages 845-863, October.
  • Handle: RePEc:wly:navres:v:46:y:1999:i:7:p:845-863
    DOI: 10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-#
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-#
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199910)46:73.0.CO;2-#?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clyde L. Monma & Chris N. Potts, 1989. "On the Complexity of Scheduling with Batch Setup Times," Operations Research, INFORMS, vol. 37(5), pages 798-804, October.
    2. Tang, Christopher S., 1990. "Scheduling batches on parallel machines with major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 46(1), pages 28-37, May.
    3. Gregory Dobson & Uday S. Karmarkar & Jeffrey L. Rummel, 1987. "Batching to Minimize Flow Times on One Machine," Management Science, INFORMS, vol. 33(6), pages 784-799, June.
    4. Bitran, Gabriel R. & Gilbert, Stephen M., 1989. "Sequencing production on parallel machines with two magnitudes of sequence dependent setup costs," Working papers 3054-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Gregory Dobson & Uday S. Karmarkar & Jeffrey L. Rummel, 1989. "Batching to Minimize Flow Times on Parallel Heterogeneous Machines," Management Science, INFORMS, vol. 35(5), pages 607-613, May.
    6. Burton D. Corwin & Augustine O. Esogbue, 1974. "Two machine flow shop scheduling problems with sequence dependent setup times: A dynamic programming approach," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 21(3), pages 515-524, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J-J Wang & J-B Wang & F Liu, 2011. "Parallel machines scheduling with a deteriorating maintenance activity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1898-1902, October.
    2. Michael Geurtsen & Jelle Adan & Alp Akçay, 2024. "Integrated maintenance and production scheduling for unrelated parallel machines with setup times," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 1046-1079, September.
    3. Behrooz Shahbazi & Seyed Habib A. Rahmati, 2021. "Developing a Flexible Manufacturing Control System Considering Mixed Uncertain Predictive Maintenance Model: a Simulation-Based Optimization Approach," SN Operations Research Forum, Springer, vol. 2(4), pages 1-43, December.
    4. Yarlin Kuo & Zi‐Ann Chang, 2007. "Integrated production scheduling and preventive maintenance planning for a single machine under a cumulative damage failure process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 602-614, September.
    5. A. Beynaghi & F. Moztarzadeh & A. Shahmardan & R. Alizadeh & J. Salimi & M. Mozafari, 2019. "Makespan minimization for batching work and rework process on a single facility with an aging effect: a hybrid meta-heuristic algorithm for sustainable production management," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 33-45, January.
    6. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    7. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    8. Maciej Drozdowski & Florian Jaehn & Radosław Paszkowski, 2017. "Scheduling Position-Dependent Maintenance Operations," Operations Research, INFORMS, vol. 65(6), pages 1657-1677, December.
    9. Detienne, Boris, 2014. "A mixed integer linear programming approach to minimize the number of late jobs with and without machine availability constraints," European Journal of Operational Research, Elsevier, vol. 235(3), pages 540-552.
    10. Deng, Qichen & Santos, Bruno F. & Curran, Richard, 2020. "A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 281(2), pages 256-273.
    11. K. H. Adjallah & K. P. Adzakpa, 2007. "Minimizing maintenance cost involving flow-time and tardiness penalty with unequal release dates," Journal of Risk and Reliability, , vol. 221(1), pages 57-65, March.
    12. Boccia, Maurizio & Masone, Adriano & Sterle, Claudio & Murino, Teresa, 2023. "The parallel AGV scheduling problem with battery constraints: A new formulation and a matheuristic approach," European Journal of Operational Research, Elsevier, vol. 307(2), pages 590-603.
    13. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    14. M. A. Kubzin & V. A. Strusevich, 2006. "Planning Machine Maintenance in Two-Machine Shop Scheduling," Operations Research, INFORMS, vol. 54(4), pages 789-800, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching, Chung Yaw & Liao, Ching-Jong & Wu, Chutao John, 1997. "Batching to minimize total production time for two part types," International Journal of Production Economics, Elsevier, vol. 48(1), pages 63-72, January.
    2. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    3. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    4. Lambrecht, Marc R. & Vandaele, Nico J., 1996. "A general approximation for the single product lot sizing model with queueing delays," European Journal of Operational Research, Elsevier, vol. 95(1), pages 73-88, November.
    5. Liaee, Mohammad Mehdi & Emmons, Hamilton, 1997. "Scheduling families of jobs with setup times," International Journal of Production Economics, Elsevier, vol. 51(3), pages 165-176, September.
    6. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    7. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    8. Daniel Adelman & George L. Nemhauser & Mario Padron & Robert Stubbs & Ram Pandit, 1999. "Allocating Fibers in Cable Manufacturing," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 21-35.
    9. Li, Shanling, 1997. "A hybrid two-stage flowshop with part family, batch production, major and minor set-ups," European Journal of Operational Research, Elsevier, vol. 102(1), pages 142-156, October.
    10. Liao, C. J. & Yu, W. C., 1996. "Sequencing heuristics for dependent setups in a continuous process industry," Omega, Elsevier, vol. 24(6), pages 649-659, December.
    11. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
    12. S Karabatı & C Akkan, 2006. "Minimizing sum of completion times on a single machine with sequence-dependent family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 271-280, March.
    13. Zhi-Long Chen, 1997. "Scheduling with batch setup times and earliness-tardiness penalties," European Journal of Operational Research, Elsevier, vol. 96(3), pages 518-537, February.
    14. Mor, Baruch & Mosheiov, Gur, 2014. "Batch scheduling with a rate-modifying maintenance activity to minimize total flowtime," International Journal of Production Economics, Elsevier, vol. 153(C), pages 238-242.
    15. Kenneth R. Baker, 1999. "Heuristic procedures for scheduling job families with setups and due dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(8), pages 978-991, December.
    16. Michele Ciavotta & Carlo Meloni & Marco Pranzo, 2016. "Speeding up a Rollout algorithm for complex parallel machine scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4993-5009, August.
    17. Joao António Noivo & Helena Ramalhinho-Lourenço, 1998. "Solving two production scheduling problems with sequence-dependent set-up times," Economics Working Papers 338, Department of Economics and Business, Universitat Pompeu Fabra.
    18. repec:dgr:rugsom:95a37 is not listed on IDEAS
    19. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    20. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    21. Roger Z. Ríos-Mercado & Jonathan F. Bard, 2003. "The Flow Shop Scheduling Polyhedron with Setup Times," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 291-318, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:46:y:1999:i:7:p:845-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.