IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i1d10.1007_s10729-022-09608-1.html
   My bibliography  Save this article

Screening for preclinical Alzheimer’s disease: Deriving optimal policies using a partially observable Markov model

Author

Listed:
  • Zehra Önen Dumlu

    (Koç University
    University of Bath)

  • Serpil Sayın

    (Koç University)

  • İbrahim Hakan Gürvit

    (Istanbul University)

Abstract

Alzheimer’s Disease (AD) is believed to be the most common type of dementia. Even though screening for AD has been discussed widely, there is no screening program implemented as part of a policy in any country. Current medical research motivates focusing on the preclinical stages of the disease in a modeling initiative. We develop a partially observable Markov decision process model to determine optimal screening programs. The model contains disease free and preclinical AD partially observable states and the screening decision is taken while an individual is in one of those states. An observable diagnosed preclinical AD state is integrated along with observable mild cognitive impairment, AD and death states. Transition probabilities among states are estimated using data from Knight Alzheimer’s Disease Research Center (KADRC) and relevant literature. With an objective of maximizing expected total quality-adjusted life years (QALYs), the output of the model is an optimal screening program that specifies at what points in time an individual over 50 years of age with a given risk of AD will be directed to undergo screening. The screening test used to diagnose preclinical AD has a positive disutility, is imperfect and its sensitivity and specificity are estimated using the KADRC data set. We study the impact of a potential intervention with a parameterized effectiveness and disutility on model outcomes for three different risk profiles (low, medium and high). When intervention effectiveness and disutility are at their best, the optimal screening policy is to screen every year between ages 50 and 95, with an overall QALY gain of 0.94, 1.9 and 2.9 for low, medium and high risk profiles, respectively. As intervention effectiveness diminishes and/or its disutility increases, the optimal policy changes to sporadic screening and then to never screening. Under several scenarios, some screening within the time horizon is optimal from a QALY perspective. Moreover, an in-depth analysis of costs reveals that implementing these policies are either cost-saving or cost-effective.

Suggested Citation

  • Zehra Önen Dumlu & Serpil Sayın & İbrahim Hakan Gürvit, 2023. "Screening for preclinical Alzheimer’s disease: Deriving optimal policies using a partially observable Markov model," Health Care Management Science, Springer, vol. 26(1), pages 1-20, March.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:1:d:10.1007_s10729-022-09608-1
    DOI: 10.1007/s10729-022-09608-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09608-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09608-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    2. Christine L. Barnett & Scott A. Tomlins & Daniel J. Underwood & John T. Wei & Todd M. Morgan & James E. Montie & Brian T. Denton, 2017. "Two-Stage Biomarker Protocols for Improving the Precision of Early Detection of Prostate Cancer," Medical Decision Making, , vol. 37(7), pages 815-826, October.
    3. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    4. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    5. Tzeyu L. Michaud & Robert L. Kane & J. Riley McCarten & Joseph E. Gaugler & John A. Nyman & Karen M. Kuntz, 2018. "Using Cerebrospinal Fluid Biomarker Testing to Target Treatment to Patients with Mild Cognitive Impairment: A Cost-Effectiveness Analysis," PharmacoEconomics - Open, Springer, vol. 2(3), pages 309-323, September.
    6. James N. Eagle, 1984. "The Optimal Search for a Moving Target When the Search Path Is Constrained," Operations Research, INFORMS, vol. 32(5), pages 1107-1115, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    2. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    3. Ali Hajjar & Oguzhan Alagoz, 2023. "Personalized Disease Screening Decisions Considering a Chronic Condition," Management Science, INFORMS, vol. 69(1), pages 260-282, January.
    4. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    5. Junbo Son & Yeongin Kim & Shiyu Zhou, 2022. "Alerting patients via health information system considering trust-dependent patient adherence," Information Technology and Management, Springer, vol. 23(4), pages 245-269, December.
    6. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    7. Jue Wang, 2016. "Minimizing the false alarm rate in systems with transient abnormality," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 320-334, June.
    8. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    9. Otten, Maarten & Timmer, Judith & Witteveen, Annemieke, 2020. "Stratified breast cancer follow-up using a continuous state partially observable Markov decision process," European Journal of Operational Research, Elsevier, vol. 281(2), pages 464-474.
    10. Li, Weiyu & Denton, Brian T. & Morgan, Todd M., 2023. "Optimizing active surveillance for prostate cancer using partially observable Markov decision processes," European Journal of Operational Research, Elsevier, vol. 305(1), pages 386-399.
    11. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.
    12. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    13. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
    14. Fatih Safa Erenay & Oguzhan Alagoz & Adnan Said, 2014. "Optimizing Colonoscopy Screening for Colorectal Cancer Prevention and Surveillance," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 381-400, July.
    15. Alireza Boloori & Soroush Saghafian & Harini A. Chakkera & Curtiss B. Cook, 2020. "Data-Driven Management of Post-transplant Medications: An Ambiguous Partially Observable Markov Decision Process Approach," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 1066-1087, September.
    16. Burhaneddin Sandıkçı & Lisa M. Maillart & Andrew J. Schaefer & Mark S. Roberts, 2013. "Alleviating the Patient's Price of Privacy Through a Partially Observable Waiting List," Management Science, INFORMS, vol. 59(8), pages 1836-1854, August.
    17. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    18. Jue Wang & Chi-Guhn Lee, 2015. "Multistate Bayesian Control Chart Over a Finite Horizon," Operations Research, INFORMS, vol. 63(4), pages 949-964, August.
    19. Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.
    20. Hossein Kamalzadeh & Vishal Ahuja & Michael Hahsler & Michael E. Bowen, 2021. "An Analytics‐Driven Approach for Optimal Individualized Diabetes Screening," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3161-3191, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:1:d:10.1007_s10729-022-09608-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.