IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v37y1990i4p587-597.html
   My bibliography  Save this article

A note on the generalized due dates scheduling problems

Author

Listed:
  • C. Sriskandarajah

Abstract

We consider the problem of scheduling jobs on a single machine with generalized due dates. The due dates are given according to the position in which a job is completed, rather than the identity of that job. The computational complexity question of whether the total weighted tardiness problem can be solved in polynomial time or NP‐hard is posed as an open problem in [4]. We show that this problem is NP‐hard. We also establish NP‐hardness results for the scheduling problems with precedence constraints.

Suggested Citation

  • C. Sriskandarajah, 1990. "A note on the generalized due dates scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 587-597, August.
  • Handle: RePEc:wly:navres:v:37:y:1990:i:4:p:587-597
    DOI: 10.1002/1520-6750(199008)37:43.0.CO;2-O
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199008)37:43.0.CO;2-O
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199008)37:43.0.CO;2-O?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "Complexity results for scheduling chains on a single machine," European Journal of Operational Research, Elsevier, vol. 4(4), pages 270-275, April.
    2. E. L. Lawler, 1973. "Optimal Sequencing of a Single Machine Subject to Precedence Constraints," Management Science, INFORMS, vol. 19(5), pages 544-546, January.
    3. K. R. Baker & E. L. Lawler & J. K. Lenstra & A. H. G. Rinnooy Kan, 1983. "Preemptive Scheduling of a Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Constraints," Operations Research, INFORMS, vol. 31(2), pages 381-386, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    2. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    3. Gur Mosheiov & Daniel Oron & Dvir Shabtay, 2022. "On the tractability of hard scheduling problems with generalized due-dates with respect to the number of different due-dates," Journal of Scheduling, Springer, vol. 25(5), pages 577-587, October.
    4. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    5. Wang, Du-Juan & Yin, Yunqiang & Xu, Jianyou & Wu, Wen-Hsiang & Cheng, Shuenn-Ren & Wu, Chin-Chia, 2015. "Some due date determination scheduling problems with two agents on a single machine," International Journal of Production Economics, Elsevier, vol. 168(C), pages 81-90.
    6. Lin, B.M.T. & Liu, S.T., 2008. "Maximizing the reward in the relocation problem with generalized due dates," International Journal of Production Economics, Elsevier, vol. 115(1), pages 55-63, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janiak, Adam & Kovalyov, Mikhail Y., 2006. "Scheduling in a contaminated area: A model and polynomial algorithms," European Journal of Operational Research, Elsevier, vol. 173(1), pages 125-132, August.
    2. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
    3. Ramachandra, Girish & Elmaghraby, Salah E., 2006. "Sequencing precedence-related jobs on two machines to minimize the weighted completion time," International Journal of Production Economics, Elsevier, vol. 100(1), pages 44-58, March.
    4. Rubing Chen & Jinjiang Yuan, 2020. "Single-machine scheduling of proportional-linearly deteriorating jobs with positional due indices," 4OR, Springer, vol. 18(2), pages 177-196, June.
    5. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    6. Reha Uzsoy & Chung‐Yee Lee & Louis A. Martin‐Vega, 1992. "Scheduling semiconductor test operations: Minimizing maximum lateness and number of tardy jobs on a single machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 369-388, April.
    7. Adam Kasperski & Paweł Zieliński, 2019. "Risk-averse single machine scheduling: complexity and approximation," Journal of Scheduling, Springer, vol. 22(5), pages 567-580, October.
    8. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
    9. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    10. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    11. Averbakh, Igor & Pereira, Jordi, 2015. "Network construction problems with due dates," European Journal of Operational Research, Elsevier, vol. 244(3), pages 715-729.
    12. J-B Wang & J-J Wang & P Ji, 2011. "Scheduling jobs with chain precedence constraints and deteriorating jobs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1765-1770, September.
    13. Sterna, Malgorzata, 2011. "A survey of scheduling problems with late work criteria," Omega, Elsevier, vol. 39(2), pages 120-129, April.
    14. Fridman, Ilia & Pesch, Erwin & Shafransky, Yakov, 2020. "Minimizing maximum cost for a single machine under uncertainty of processing times," European Journal of Operational Research, Elsevier, vol. 286(2), pages 444-457.
    15. Zhang, Liqi & Lu, Lingfa & Yuan, Jinjiang, 2009. "Single machine scheduling with release dates and rejection," European Journal of Operational Research, Elsevier, vol. 198(3), pages 975-978, November.
    16. P. Detti & D. Pacciarelli, 2001. "A branch and bound algorithm for the minimum storage‐time sequencing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(4), pages 313-331, June.
    17. Liqi Zhang & Lingfa Lu, 2016. "Parallel-machine scheduling with release dates and rejection," 4OR, Springer, vol. 14(2), pages 165-172, June.
    18. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    19. Gur Mosheiov & Assaf Sarig, 2023. "A note on lot scheduling on a single machine to minimize maximum weighted tardiness," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-11, July.
    20. Olivier Ploton & Vincent T’kindt, 2022. "Exponential-time algorithms for parallel machine scheduling problems," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3405-3418, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:37:y:1990:i:4:p:587-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.