IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v34y1987i5p721-738.html
   My bibliography  Save this article

Complexity of sequencing tasks in assembly cells attended by one or two robots

Author

Listed:
  • Wilbert E. Wilhelm

Abstract

This article develops a structure by which the computational complexity of sequencing problems in assembly cells attended by one or two robots may be evaluated. A taxonomy of cell features that affect complexity is developed, polynomial‐time algorithms are presented for certain problems, and borderline designs at which complexity changes dramatically are identified. Results will aid cell designers by indicating classes of designs for which task sequence may be optimized and other classes for which this cannot be done. Designs which entail features that lead to intractable sequencing problems may be modified to maximize cell productivity.

Suggested Citation

  • Wilbert E. Wilhelm, 1987. "Complexity of sequencing tasks in assembly cells attended by one or two robots," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 721-738, October.
  • Handle: RePEc:wly:navres:v:34:y:1987:i:5:p:721-738
    DOI: 10.1002/1520-6750(198710)34:53.0.CO;2-H
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198710)34:53.0.CO;2-H
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198710)34:53.0.CO;2-H?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. C. Hu, 1961. "Parallel Sequencing and Assembly Line Problems," Operations Research, INFORMS, vol. 9(6), pages 841-848, December.
    2. M. R. Garey & R. L. Graham & D. S. Johnson, 1978. "Performance Guarantees for Scheduling Algorithms," Operations Research, INFORMS, vol. 26(1), pages 3-21, February.
    3. Stephen C. Graves & Bruce W. Lamar, 1983. "An Integer Programming Procedure for Assembly System Design Problems," Operations Research, INFORMS, vol. 31(3), pages 522-545, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Güneş Erdoğan & Maria Battarra & Gilbert Laporte, 2014. "Scheduling twin robots on a line," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 119-130, March.
    2. Hall, Nicholas G. & Kamoun, Hichem & Sriskandarajah, Chelliah, 1998. "Scheduling in robotic cells: Complexity and steady state analysis," European Journal of Operational Research, Elsevier, vol. 109(1), pages 43-65, August.
    3. Hichem Kamoun & Nicholas G. Hall & Chelliah Sriskandarajah, 1999. "Scheduling in Robotic Cells: Heuristics and Cell Design," Operations Research, INFORMS, vol. 47(6), pages 821-835, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    2. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    3. Ramachandra, Girish & Elmaghraby, Salah E., 2006. "Sequencing precedence-related jobs on two machines to minimize the weighted completion time," International Journal of Production Economics, Elsevier, vol. 100(1), pages 44-58, March.
    4. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    5. Anulark Pinnoi & Wilbert E. Wilhelm, 1998. "Assembly System Design: A Branch and Cut Approach," Management Science, INFORMS, vol. 44(1), pages 103-118, January.
    6. Jonathan Oesterle & Lionel Amodeo & Farouk Yalaoui, 2019. "A comparative study of Multi-Objective Algorithms for the Assembly Line Balancing and Equipment Selection Problem under consideration of Product Design Alternatives," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1021-1046, March.
    7. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    8. James, R. J. W. & Buchanan, J. T., 1997. "A neighbourhood scheme with a compressed solution space for the early/tardy scheduling problem," European Journal of Operational Research, Elsevier, vol. 102(3), pages 513-527, November.
    9. Tianyu Wang & Odile Bellenguez, 2021. "Three notes on scheduling unit-length jobs with precedence constraints to minimize the total completion time," Journal of Scheduling, Springer, vol. 24(6), pages 649-662, December.
    10. Miralles, Cristobal & Garcia-Sabater, Jose Pedro & Andres, Carlos & Cardos, Manuel, 2007. "Advantages of assembly lines in Sheltered Work Centres for Disabled. A case study," International Journal of Production Economics, Elsevier, vol. 110(1-2), pages 187-197, October.
    11. Becker, Christian & Scholl, Armin, 2006. "A survey on problems and methods in generalized assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 694-715, February.
    12. Blazewicz, Jacek & Liu, Zhen, 2002. "Linear and quadratic algorithms for scheduling chains and opposite chains," European Journal of Operational Research, Elsevier, vol. 137(2), pages 248-264, March.
    13. Rodriguez Diaz, Antonio & Tchernykh, Andrei & Ecker, Klaus H., 2003. "Algorithms for dynamic scheduling of unit execution time tasks," European Journal of Operational Research, Elsevier, vol. 146(2), pages 403-416, April.
    14. Sonja Kolen & Stefan Dähling & Timo Isermann & Antonello Monti, 2018. "Enabling the Analysis of Emergent Behavior in Future Electrical Distribution Systems Using Agent-Based Modeling and Simulation," Complexity, Hindawi, vol. 2018, pages 1-16, February.
    15. Ng, C.T. & Barketau, M.S. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2010. ""Product Partition" and related problems of scheduling and systems reliability: Computational complexity and approximation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 601-604, December.
    16. Tianyu Wang & Odile Bellenguez-Morineau, 2019. "The Complexity of Parallel Machine Scheduling of Unit-Processing-Time Jobs under Level-Order Precedence Constraints," Journal of Scheduling, Springer, vol. 22(3), pages 263-269, June.
    17. Krishnamoorthy, Venkatesh & Efe, Kemal, 1996. "Task scheduling with and without communication delays: A unified approach," European Journal of Operational Research, Elsevier, vol. 89(2), pages 366-379, March.
    18. Markó Horváth & Tamás Kis, 2020. "Polyhedral results for position-based scheduling of chains on a single machine," Annals of Operations Research, Springer, vol. 284(1), pages 283-322, January.
    19. Kap Hwan Kim & Jong Wook Bae, 2004. "A Look-Ahead Dispatching Method for Automated Guided Vehicles in Automated Port Container Terminals," Transportation Science, INFORMS, vol. 38(2), pages 224-234, May.
    20. Agpak, Kursad & Gokcen, Hadi, 2005. "Assembly line balancing: Two resource constrained cases," International Journal of Production Economics, Elsevier, vol. 96(1), pages 129-140, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:34:y:1987:i:5:p:721-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.